Extension of the Pole-Placement Shifting Based Tuning Algorithm to Neutral Delay Systems: A Case Study

Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 348)


In [1], a revised version of the Pole-Placement Shifting based controller tuning Algorithm (PPSA), a finite-dimensional model-matching controller tuning method for time-delay systems (TDS), was presented together with some suggestions about algorithm improvements and modifications. Its leading idea consists in the placing the dominant characteristic poles and zeros of the infinite-dimensional feedback control system with respect to the desired dynamics of the simple finite-dimensional matching model. So far, retarded TDS have been studied in the reign of the PPSA. This paper, however, brings a detailed case study on a more advanced and intricate neutral-type control feedback. Unstable controlled plant is selected in our example, in addition. The results indicate a very good applicability of the PPSA under some minor modifications of standard manipulations with the neutral-type delayed spectrum.


Time delay systems neutral-type delay spectrum-shaping controller tuning optimization MATLAB direct-search algorithms model matching 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Pekař, L., Navrátil, P.: PPSA: A Tool for Suboptimal Control of Time Delay Systems: Revision and Open Tasks. In: Šilhavý, R., Šenkeřík, R., Komínková Oplatková, Z., Prokopová, Z. (eds.) Modern Trends and Techniques in Computer Science, 3rd Computer Science Online Conference 2014 (CSOC 2014). AISC, vol. 285, pp. 17–28. Springer, Heidelberg (2014)Google Scholar
  2. 2.
    Åström, K.J., Hägglund, T.: Advanced PID Control. ISA, Research Triangle Park (2005)Google Scholar
  3. 3.
    O’Dwyer, A.: Handbook of PI and PID Controller Tuning Rules. Imperial College Press, London (2009)CrossRefGoogle Scholar
  4. 4.
    Hale, J.K., Verduyn Lunel, S.M.: Introduction to Functional Differential Equations. Applied Mathematical Sciences, vol. 99. Springer, New York (1993)zbMATHGoogle Scholar
  5. 5.
    Richard, J.P.: Time-Delay Systems: An Overview of Some Recent Advances and Open Problems. Automatica 39, 1667–1694 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Sipahi, R., Vyhlídal, T., Niculescu, S.-I., Pepe, P.: Time Delay Sys.: Methods, Appli. and New Trends. LNCIS, vol. 423. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  7. 7.
    Pekař, L.: A Ring for Description and Control of Time-Delay Systems. WSEAS Trans. Systems, Special Issue on Modelling, Identification, Stability, Control and Applications 11, 571–585 (2012)Google Scholar
  8. 8.
    Pekař, L., Prokop, R.: Control of Time Delay Systems in a Robust Sense Using Two Controllers. In: Proc. 6th Int. Symposium on Communication, Control and Signal Processing (ISCCSP 2014), pp. 254–257. IEEE Press, Athens (2014)Google Scholar
  9. 9.
    Michiels, W., Vyhlídal, T.: An Eigenvalue Based Approach for the Stabilization of Linear Time-Delay Systems of Neutral Type. Automatica 41, 991–998 (2005)CrossRefzbMATHGoogle Scholar
  10. 10.
    Rabah, R., Sklyar, G.M., Rezounenko, A.V.: Stability Analysis of Neutral Type Systems in Hilbert Space. J. Differ. Equ. 214, 391–428 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Vyhlídal, T., Zítek, P.: Modification of Mikhaylov Criterion for Neutral Time-Delay Systems. IEEE Trans. Autom. Control 54, 2430–2435 (2009)CrossRefGoogle Scholar
  12. 12.
    Pekař, L.: On a Controller Parameterization for Infinite-dimensional Feedback Systems Based on the Desired Overshoot. WSEAS Trans. Systems 12, 325–335 (2013)Google Scholar
  13. 13.
    Olgac, N., Sipahi, J., Ergenc, A.F.: ‘Delay Scheduling’ as Unconventional Use of Time Delay for Trajectory Tracking. Mechatronics 17, 199–206 (2007)CrossRefGoogle Scholar
  14. 14.
    Michiels, W., Engelborghs, K., Vansevevant, P., Roose, D.: Continuous Pole Placement for Delay Equations. Automatica 38, 747–761 (2002)CrossRefzbMATHGoogle Scholar
  15. 15.
    Fletcher, R.: Practical Methods of Optimization. Wiley, New York (1987)zbMATHGoogle Scholar
  16. 16.
    Šulc, B., Vítečková, M.: Theory and Practice of Control System Design. Czech Technical University in Prague, Prague (2004) (in Czech) Google Scholar
  17. 17.
    Vyhlídal, T., Zítek, P.: QPmR - Quasi-Polynomial Root-Finder: Algorithm Update and Examples. In: Vyhlídal, T., Lafay, J.-F., Sipahi, R. (eds.) Delay Systems: From Theory to Numerics and Applications, pp. 299–312. Springer, New York (2014)CrossRefGoogle Scholar
  18. 18.
    Nelder, J.A., Mead, R.: A Simplex Method for Function Minimization. The Computer J. 7, 308–313 (1965)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Faculty of Applied InformaticsTomas Bata University in ZlínZlínCzech Republic

Personalised recommendations