Advertisement

An Initial Study on the New Adaptive Approach for Multi-chaotic Differential Evolution

Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 347)

Abstract

This paper aims on the initial investigations on the novel adaptive multi-chaos-driven evolutionary algorithm Differential Evolution (DE). This paper is focused on the embedding and adaptive alternating of set of two discrete dissipative chaotic systems in the form of chaotic pseudo random number generators for the DE. In this paper the novel adaptive concept of DE/rand/1/bin strategy driven alternately by two chaotic maps (systems) is introduced. Repeated simulations were performed and analyzed on the well known test function in higher dimension setting.

Keywords

Differential Evolution Deterministic chaos 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Price, K.V.: An Introduction to Differential Evolution. In: Corne, D., Dorigo, M., Glover, F. (eds.) New Ideas in Optimization, pp. 79–108. McGraw-Hill Ltd. (1999)Google Scholar
  2. 2.
    Aydin, I., Karakose, M., Akin, E.: Chaotic-based hybrid negative selection algorithm and its applications in fault and anomaly detection. Expert Systems with Applications 37(7), 5285–5294 (2010)CrossRefGoogle Scholar
  3. 3.
    Caponetto, R., Fortuna, L., Fazzino, S., Xibilia, M.G.: Chaotic sequences to improve the performance of evolutionary algorithms. IEEE Transactions on Evolutionary Computation 7(3), 289–304 (2003)CrossRefGoogle Scholar
  4. 4.
    Davendra, D., Zelinka, I., Senkerik, R.: Chaos driven evolutionary algorithms for the task of PID control. Computers & Mathematics with Applications 60(4), 1088–1104 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Zelinka, I.: SOMA — Self-Organizing Migrating Algorithm. In: Onwubolu, G.C., Babu, B.V. (eds.) New Optimization Techniques in Engineering. STUDFUZZ, vol. 141, pp. 167–217. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  6. 6.
    Coelho, L.d.S., Mariani, V.C.: A novel chaotic particle swarm optimization approach using Hénon map and implicit filtering local search for economic load dispatch. Chaos, Solitons & Fractals 39(2), 510–518 (2009)CrossRefGoogle Scholar
  7. 7.
    Davendra, D., Bialic-Davendra, M., Senkerik, R.: Scheduling the Lot-Streaming Flowshop scheduling problem with setup time with the chaos-induced Enhanced Differential Evolution. In: 2013 IEEE Symposium on Differential Evolution (SDE), April 16-19, pp. 119–126 (2013)Google Scholar
  8. 8.
    Pluhacek, M., Senkerik, R., Davendra, D., Kominkova Oplatkova, Z., Zelinka, I.: On the behavior and performance of chaos driven PSO algorithm with inertia weight. Computers & Mathematics with Applications 66(2), 122–134 (2013)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Pluhacek, M., Senkerik, R., Zelinka, I., Davendra, D.: Chaos PSO algorithm driven alternately by two different chaotic maps - An initial study. In: 2013 IEEE Congress on Evolutionary Computation (CEC), June 20-23, pp. 2444–2449 (2013)Google Scholar
  10. 10.
    Senkerik, R., Pluhacek, M., Davendra, D., Zelinka, I., Oplatkova, Z.K.: Performance Testing of Multi-Chaotic Differential Evolution Concept on Shifted Benchmark Functions. In: Polycarpou, M., de Carvalho, A.C.P.L.F., Pan, J.-S., Woźniak, M., Quintian, H., Corchado, E. (eds.) HAIS 2014. LNCS, vol. 8480, pp. 306–317. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  11. 11.
    Pluhacek, M., Senkerik, R., Zelinka, I., Davendra, D.: New Adaptive Approach for Chaos PSO Algorithm Driven Alternately by Two Different Chaotic Maps – An Initial Study. In: Zelinka, I., Chen, G., Rössler, O.E., Snasel, V., Abraham, A. (eds.) Nostradamus 2013: Prediction, Model. & Analysis. AISC, vol. 210, pp. 77–87. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  12. 12.
    Price, K.V., Storn, R.M., Lampinen, J.A.: Differential Evolution - A Practical Approach to Global Optimization. Natural Computing Series. Springer, Heidelberg (2005)zbMATHGoogle Scholar
  13. 13.
    ELabbasy, E., Agiza, H., EL-Metwally, H., Elsadany, A.: Bifurcation Analysis, Chaos and Control in the Burgers Mapping. International Journal of Nonlinear Science 4(3), 171–185 (2007)MathSciNetGoogle Scholar
  14. 14.
    Sprott, J.C.: Chaos and Time-Series Analysis. Oxford University Press (2003)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Faculty of Applied InformaticsTomas Bata University in ZlinZlinCzech Republic

Personalised recommendations