Integrating Grid Template Patterns and Multiple Committees of Neural Networks in Forex Market

  • Nikitas Goumatianos
  • Ioannis Christou
  • Peter Lindgren
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 347)

Abstract

We present a hybrid framework for trading in Forex spot market by integrating two different technologies: price patterns based on an array of grid template methods and multiple committees of neural networks. This integration is applied in four currency pairs (EUR/JPY, EUR/USD, GBP/JPY and GBP/USD) using data of a 20 min timeframe. In this research we examine two different fusion approaches for Forex trading: the first one is based on price pattern discovery methods and committees of neural networks as independent entities and works by assigning one entity as basic signal provider and the other as filtering system. The second approach is to take price pattern properties (e.g. forecasting power values) together with technical indicators to feed and train the neural networks. Results show that in both approaches, integration of these independent technologies can improve the trading performance by bringing higher net profits and less risk.

Keywords

Forex Market Committee of Neural Networks Template Grid Method Price Pattern Discovery Trading Strategies 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Caginalp, G., Laurent, H.: The predictive power of price patterns. Applied Mathematical Finance 5, 181–205 (1998)CrossRefMATHGoogle Scholar
  2. 2.
    Lee, K.H., Jo, G.S.: Expert system for predicting stock market timing using a candlestick chart. Exp. Sys. Appl. 16, 257–364 (1999)Google Scholar
  3. 3.
    Marshall, B.R., Young, M.R., Rose, L.C.: Candlestick technical trading strategies: can they create value for investors? J. Bank. Fin. 30, 2303–2323 (2006)CrossRefGoogle Scholar
  4. 4.
    Zhang, Z., Jiang, J., Liu, X., Lau, R., Wang, H., Zhang, R.: A real-time hybrid pattern matching scheme for stock time series. In: Proc. 21st Australasian Conf. on Database Technologies, vol. 104, pp. 161–170 (2010)Google Scholar
  5. 5.
    Walid, B., Van Oppens, H.: The performance analysis of chart patterns: Monte-Carlo simulation and evidence from the euro/dollar foreign exchange market. Empirical Economics 30, 947–971 (2006)CrossRefGoogle Scholar
  6. 6.
    Goumatianos, N., Christou, I., Lindgren, P.: Intraday Business Model Strategies on Forex Markets: Comparing the performance of Price Pattern Recognition Methods. Journal of Multi Business Model Innovation and Technology 2(1) (2013) ISSN:2245-8832Google Scholar
  7. 7.
    Wang, J.-L., Chan, S.-H.: Stock market trading rule discovery using pattern recognition and technical analysis. Expert Systems with Applications 33, 304–315 (2007)CrossRefGoogle Scholar
  8. 8.
    Leigh, W., Modani, N., Purvis, R., Roberts, T.: Stock market trading rule discovery using technical charting heuristics. Expert Systems with Applications 23(2), 155–159 (2002)CrossRefGoogle Scholar
  9. 9.
    Leigh, W., Purvis, R., Ragusa, J.M.: Forecasting the NYSE composite index with technical analysis, pattern recognizer, neural network, and genetic algorithm: a case study in romantic decision support. Decision Support Systems 32, 161–174 (2002)CrossRefGoogle Scholar
  10. 10.
    Leigh, W., Modani, N., Hightower, R.: A computational implementation of stock charting: Abrupt volume increase as signal for movement in New York stock exchange composite index. Decision Support Systems 37, 515–530 (2004)CrossRefGoogle Scholar
  11. 11.
    Bo, L., Linyan, S., Mweene, R.: Empirical study of trading rule discovery in China stock market. Expert Systems with Applications 28, 531–535 (2005)CrossRefGoogle Scholar
  12. 12.
    Yao, J., Tan, L.: A case study on neural networks to perform technical forecasting of forex. Neurocomputing 34, 79–98 (2000)CrossRefMATHGoogle Scholar
  13. 13.
    Dunis, C.L., Williams, M.: Modelling and trading the EUR/USD exchange rate: Do neural network models perform better? Derivatives Use, Trading & Regulation 8, 211–239 (2002)Google Scholar
  14. 14.
    Yao, J., Tan, C.L.: A case study on using neural networks to perform technical forecasting of forex. Neurocomputing 34, 79–98 (2000)CrossRefMATHGoogle Scholar
  15. 15.
    Girosi, F., Jones, M., Poggio, T.: Regularization theory and neural networks architectures. Neural Computation 7, 219–269 (1995)CrossRefGoogle Scholar
  16. 16.
    Bettebghor, D., et al.: Surrogate Modeling Approximation using a Mixture of Experts based on EM joint Estimation. Structural and Multidisciplinary Optimization 43(2) (2011)Google Scholar
  17. 17.
    Breiman, L.: Bagging predictors. Journal Machine Learning 24, 123–140 (1996)MATHMathSciNetGoogle Scholar
  18. 18.
    Schapire, R.E.: The Boosting Approach to Machine Learning: An Overview. In: MSRI Workshop (2002)Google Scholar
  19. 19.
    Jacobs, R.A., Jordan, M.I., Nowlan, S.J., Hinton, G.E.: Adaptive mixtures of local experts. Neural Computation 3, 79–87 (1991)CrossRefGoogle Scholar
  20. 20.
    Avnimelech, R., Intrator, N.: Boosted mixture of experts: An ensemble learning scheme. Neural Computation 11(2), 483–497 (1999)CrossRefGoogle Scholar
  21. 21.
    Srivastava, A.N., Su, R., Weigend, A.S.: Data mining for features using scale-sensitive gated experts. IEEE Transactions on Pattern Analysis and Machine Intelligence 21, 1268–1279 (1999)CrossRefGoogle Scholar
  22. 22.
    Lima, C.A.M., Coelho, A.L.V., Von Zuben, F.J.: Hybridizing mixtures of experts with support vector machines: Investigation into nonlinear dynamic systems identification. Information Sciences 177(10), 2049–2074 (2007)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Nikitas Goumatianos
    • 1
    • 2
  • Ioannis Christou
    • 1
  • Peter Lindgren
    • 3
  1. 1.Athens Information TechnologyPaianiaGreece
  2. 2.Aalborg UniversityAalborgDenmark
  3. 3.Aarhus UniversityHerningDenmark

Personalised recommendations