A Linear Scale-Space Theory for Continuous Nonlocal Evolutions

  • Giovanno Marcelo Cárdenas
  • Joachim Weickert
  • Sarah Schäffer
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9087)

Abstract

Most scale-space evolutions are described in terms of partial differential equations. In recent years, however, nonlocal processes have become an important research topic in image analysis. The goal of our paper is to establish well-posedness and scale-space properties for a class of nonlocal evolutions. They are given by linear integro-differential equations with measures. In analogy to Weickert’s diffusion theory (1998), we prove existence and uniqueness, preservation of the average grey value, a maximum–minimum principle, image simplification properties in terms of Lyapunov functionals, and we establish convergence to a constant steady state. We show that our nonlocal scale-space theory covers nonlocal variants of linear diffusion. Moreover, by choosing specific discrete measures, the classical semidiscrete diffusion framework is identified as a special case of our continuous theory. Last but not least, we introduce two modifications of bilateral filtering. In contrast to previous bilateral filters, our variants create nonlocal scale-spaces that preserve the average grey value and that can be highly robust under noise. While these filters are linear, they can achieve a similar performance as nonlinear and even anisotropic diffusion equations.

Keywords

Nonlocal processes Scale-space Diffusion Integro-differential equations Well-posedness Bilateral filtering 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Iijima, T.: Basic Theory on Normalization of Pattern (in Case of Typical One- Dimensional Pattern). Bulletin of the Electrotechnical Laboratory 26, 368–388 (1962) (in Japanese)Google Scholar
  2. 2.
    Witkin, A.P.: Scale-space filtering. In: Proc. Eighth International Joint Conference on Artificial Intelligence, vol. 2, Karlsruhe, West Germany, pp. 945–951 (August 1983)Google Scholar
  3. 3.
    Koenderink, J.J.: The Structure of Images. Biological Cybernetics 50, 363–370 (1984)CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    Lowe, D.L.: Distinctive Image Features From Scale-Invariant Keypoints. International Journal of Computer Vision 60(2), 91–110 (2004)CrossRefGoogle Scholar
  5. 5.
    Lindeberg, T.: Scale-Space Theory in Computer Vision. Kluwer, Boston (1994)CrossRefGoogle Scholar
  6. 6.
    Florack, L.: Image Structure. Computational Imaging and Vision, vol. 10. Kluwer, Dordrecht (1997)Google Scholar
  7. 7.
    Weickert, J., Ishikawa, S., Imiya, A.: Linear Scale-Space has First been Proposed in Japan. Journal of Mathematical Imaging and Vision 10(3), 237–252 (1999)CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Felsberg, M., Sommer, G.: Scale-adaptive filtering derived From the laplace equation. In: Radig, B., Florczyk, S. (eds.) DAGM 2001. LNCS, vol. 2191, pp. 124–131. Springer, Heidelber (2001)CrossRefGoogle Scholar
  9. 9.
    Duits, R., Florack, L., de Graaf, J., ter Haar Romeny, B.: On the Axioms of Scale Space Theory. Journal of Mathematical Imaging and Vision 20, 267–298 (2004)Google Scholar
  10. 10.
    Weickert, J.: Anisotropic Diffusion in Image Processing. Teubner, Stuttgart (1998)MATHGoogle Scholar
  11. 11.
    van den Boomgaard, R.: The Morphological Equivalent of the Gauss Convolution. Nieuw Archief Voor Wiskunde 10(3), 219–236 (1992)MATHMathSciNetGoogle Scholar
  12. 12.
    Alvarez, L., Guichard, F., Lions, P.L., Morel, J.M.: Axioms and Fundamental Equations in Image Processing. Archive for Rational Mechanics and Analysis 123, 199–257 (1993)CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    Guichard, F.: A Morphological, Affine, and Galilean Invariant Scale-Space for movies. IEEE Transactions on Image Processing 7(3), 444–456 (1998)CrossRefGoogle Scholar
  14. 14.
    Lindeberg, T.: Generalized Gaussian Scale-Space Axiomatics Comprising Linear Scale-Space, Affine Scale-Space and Spatio-Temporal Scale-Space. Journal of Mathematical Imaging and Vision 40, 36–81 (2011)CrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    Scherzer, O., Weickert, J.: Relations Between Regularization and Diffusion Filtering. Journal of Mathematical Imaging and Vision 12(1), 43–63 (2000)CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    Aurich, V., Weule, J.: Non-linear gaussian filters performing edge preserving diffusion. In: Sagerer, G., Posch, S., Kummert, F. (eds.): Mustererkennung 1995, pp. 538–545. Springer, Berlin (1995)Google Scholar
  17. 17.
    Tomasi, C., Manduchi, R.: Bilateral filtering for gray and color images. In: Proc. Sixth International Conference on Computer Vision, pp. 839–846. Narosa Publishing House, Bombay (1998)Google Scholar
  18. 18.
    Buades, A., Coll, B., Morel, J.M.: A Review of Image Denoising Algorithms, with a New One. Multiscale Modeling and Simulation 4(2), 490–530 (2005)CrossRefMATHMathSciNetGoogle Scholar
  19. 19.
    Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K.: Image Denoising by Sparse 3D Transform-Domain Collaborative Filtering. IEEE Transactions on Image Processing 16(8), 2080–2095 (2007)CrossRefMathSciNetGoogle Scholar
  20. 20.
    Gilboa, G., Osher, S.: Nonlocal Operators with Applications to Image Processing. Multiscale Modeling and Simulation 7, 1005–1028 (2008)CrossRefMATHMathSciNetGoogle Scholar
  21. 21.
    Andreu-Vaillo, F., Mazón, J.M., Rossi, J.D.: Nonlocal Diffusion Problems. American Mathematical Society, Providence (2010)Google Scholar
  22. 22.
    Perona, P., Malik, J.: Scale-Space and Edge Detection using Anisotropic diffusion. IEEE Transactions on Pattern Analysis and Machine Intelligence 12, 629–639 (1990)CrossRefGoogle Scholar
  23. 23.
    Catté, F., Lions, P.L., Morel, J.M., Coll, T.: Image Selective Smoothing and Edge Detection by Nonlinear Diffusion. SIAM Journal on Numerical Analysis 32, 1895–1909 (1992)Google Scholar
  24. 24.
    Weickert, J.: Theoretical Foundations of Anisotropic Diffusion in Image Processing. Computing Supplement 11, 221–236 (1996)CrossRefGoogle Scholar
  25. 25.
    Ballester, C., Calderero, F., Caselles, V., Facciolo, G.: Multiscale Analysis of Similarities between Images on Riemannian Manifolds. Multiscale Modeling and Simulation 12(2), 616–649 (2014)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Giovanno Marcelo Cárdenas
    • 1
  • Joachim Weickert
    • 1
  • Sarah Schäffer
    • 1
  1. 1.Mathematical Image Analysis Group, Faculty of Mathematics and Computer ScienceSaarland UniversitySaarbrückenGermany

Personalised recommendations