Separable Time-Causal and Time-Recursive Spatio-Temporal Receptive Fields

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9087)


We present an improved model and theory for time-causal and time-recursive spatio-temporal receptive fields, obtained by a combination of Gaussian receptive fields over the spatial domain and first-order integrators or equivalently truncated exponential filters coupled in cascade over the temporal domain. Compared to previous spatio-temporal scale-space formulations in terms of non-enhancement of local extrema or scale invariance, these receptive fields are based on different scale-space axiomatics over time by ensuring non-creation of new local extrema or zero-crossings with increasing temporal scale. Specifically, extensions are presented about parameterizing the intermediate temporal scale levels, analysing the resulting temporal dynamics and transferring the theory to a discrete implementation in terms of recursive filters over time.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hubel, D.H., Wiesel, T.N.: Brain and Visual Perception: The Story of a 25-Year Collaboration. Oxford University Press (2005)Google Scholar
  2. 2.
    DeAngelis, G.C., Ohzawa, I., Freeman, R.D.: Receptive field dynamics in the central visual pathways. Trends in Neuroscience 18, 451–457 (1995)CrossRefGoogle Scholar
  3. 3.
    DeAngelis, G.C., Anzai, A.: A modern view of the classical receptive field: linear and non-linear spatio-temporal processing by V1 neurons. In: Chalupa, L.M., Werner, J.S., (eds.) The Visual Neurosciences, vol. 1, pp. 704–719. MIT Press (2004)Google Scholar
  4. 4.
    Adelson, E., Bergen, J.: Spatiotemporal energy models for the perception of motion. J. Optical Society of America A 2, 284–299 (1985)CrossRefGoogle Scholar
  5. 5.
    Zelnik-Manor, L., Irani, M.: Event-based analysis of video. In: Proc. Computer Vision and Pattern Recognition, Kauai Marriott, Hawaii, pp. II:123–II:130 (2001)Google Scholar
  6. 6.
    Laptev, I., Lindeberg, T.: Local descriptors for spatio-temporal recognition. In: MacLean, W.J. (ed.) SCVMA 2004. LNCS, vol. 3667, pp. 91–103. Springer, Heidelberg (2006) CrossRefGoogle Scholar
  7. 7.
    Jhuang, H., Serre, T., Wolf, L., Poggio, T.: A biologically inspired system for action recognition. In: Int. Conf. on Computer Vision, pp. 1–8 (2007)Google Scholar
  8. 8.
    Shabani, A.H., Clausi, D.A., Zelek, J.S.: Improved spatio-temporal salient feature detection for action recognition. In: British Machine Vision Conf., pp. 1–12 (2011)Google Scholar
  9. 9.
    Fleet, D.J., Langley, K.: Recursive filters for optical flow. IEEE Trans. Pattern Analysis and Machine Intell. 17, 61–67 (1995)CrossRefGoogle Scholar
  10. 10.
    Lindeberg, T., Fagerström, D.: Scale-space with causal time direction. In: Buxton, B.F., Cipolla, R. (eds.) ECCV 1996. LNCS, vol. 1064, pp. 229–240. Springer, Heidelberg (1996) CrossRefGoogle Scholar
  11. 11.
    Lindeberg, T.: Generalized Gaussian scale-space axiomatics comprising linear scale-space, affine scale-space and spatio-temporal scale-space. J. of Mathematical Imaging and Vision 40, 36–81 (2011)CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    Lindeberg, T.: A computational theory of visual receptive fields. Biological Cybernetics 107, 589–635 (2013)CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    Lindeberg, T.: Scale-space for discrete signals. IEEE Trans. Pattern Analysis and Machine Intell. 12, 234–254 (1990)CrossRefGoogle Scholar
  14. 14.
    Koenderink, J.J.: Scale-time. Biological Cybernetics 58, 159–162 (1988)CrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    Lindeberg, T.: Discrete derivative approximations with scale-space properties: A basis for low-level feature extraction. J. Math. Imaging Vision 3, 349–376 (1993)CrossRefGoogle Scholar
  16. 16.
    Koenderink, J.J.: The structure of images. Biol. Cyb. 50, 363–370 (1984)MATHMathSciNetGoogle Scholar
  17. 17.
    Iijima, T.: Observation theory of two-dimensional visual patterns. Papers of Technical Group on Automata and Automatic Control, IECE, Japan (1962)Google Scholar
  18. 18.
    Florack, L.M.J., ter Haar Romeny, B.M., Koenderink, J.J., Viergever, M.A.: Scale and the differential structure of images. Image Vision Comp. 10, 376–388 (1992)Google Scholar
  19. 19.
    Pauwels, E.J., Fiddelaers, P., Moons, T., van Gool, L.J.: An extended class of scale-invariant and recursive scale-space filters. IEEE Trans. Pattern Analysis and Machine Intell. 17, 691–701 (1995)CrossRefGoogle Scholar
  20. 20.
    Weickert, J., Ishikawa, S., Imiya, A.: On the history of Gaussian scale-space axiomatics. In: Gaussian Scale-Space Theory, pp. 45–59. Springer (1997)Google Scholar
  21. 21.
    Duits, R., Florack, L., de Graaf, J., ter Haar Romeny, B.: On the axioms of scale space theory. J. of Mathematical Imaging and Vision 22, 267–298 (2004)CrossRefGoogle Scholar
  22. 22.
    Fagerström, D.: Spatio-temporal scale-spaces. In: Sgallari, F., Murli, A., Paragios, N. (eds.) SSVM 2007. LNCS, vol. 4485, pp. 326–337. Springer, Heidelberg (2007) CrossRefGoogle Scholar
  23. 23.
    Koenderink, J.J., van Doorn, A.J.: Receptive field families. Biological Cybernetics 63, 291–298 (1990)CrossRefMATHMathSciNetGoogle Scholar
  24. 24.
    Florack, L.M.J., ter Haar Romeny, B.M., Koenderink, J.J., Viergever, M.A.: Families of tuned scale-space kernels. In: Sandini, G. (ed.) ECCV 1992. LNCS, vol. 588, pp. 19–23. Springer, Heidelberg (1992) CrossRefGoogle Scholar
  25. 25.
    Tschirsich, M., Kuijper, M.: Notes on discrete Gaussian scale space. J. of Mathematical Imaging and Vision 51, 106–123 (2015)CrossRefMathSciNetGoogle Scholar
  26. 26.
    den Brinker, A.C., Roufs, J.A.J.: Evidence for a generalized Laguerre transform of temporal events by the visual system. Biological Cybernetics 67, 395–402 (1992)CrossRefMATHGoogle Scholar
  27. 27.
    Rivero-Moreno, C.J., Bres, S.: Spatio-temporal primitive extraction using Hermite and Laguerre filters for early vision video indexing. In: Campilho, A.C., Kamel, M.S. (eds.) ICIAR 2004. LNCS, vol. 3211, pp. 825–832. Springer, Heidelberg (2004) CrossRefGoogle Scholar
  28. 28.
    van der Berg, E.S., Reyneke, P.V., de Ridder, C.: Rotational image correlation in the Gauss-Laguerre domain. In: SPIE, vol. 9257, pp. 92570F-1–92570F-17 (2014)Google Scholar
  29. 29.
    Fourtes, M.G.F., Hodgkin, A.L.: Changes in the time scale and sensitivity in the omatadia of limulus. Journal of Physiology 172, 239–263 (1964)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of Computational Biology, School of Computer Science and CommunicationKTH Royal Institute of TechnologyStockholmSweden

Personalised recommendations