Morphological Scale-Space Operators for Images Supported on Point Clouds

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9087)

Abstract

The aim of this paper is to develop the theory, and to propose an algorithm, for morphological processing of images painted on point clouds, viewed as a length metric measure space \((X,d,\mu )\). In order to extend morphological operators to process point cloud supported images, one needs to define dilation and erosion as semigroup operators on \((X,d)\). That corresponds to a supremal convolution (and infimal convolution) using admissible structuring function on \((X,d)\). From a more theoretical perspective, we introduce the notion of abstract structuring functions formulated on length metric Maslov idempotent measurable spaces, which is the appropriate setting for \((X,d)\). In practice, computation of Maslov structuring function is approached by a random walks framework to estimate heat kernel on \((X,d,\mu )\), followed by the logarithmic trick.

Keywords

Mathematical morphology Point clouds image Metric measure space Idempotent measure Hamilton-Jacobi semigroup 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Akian, M.: Densities of idempotent measures and large deviations. Trans. of the American Mathematical Society 351(11), 4515–4543 (1999)CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Akian, M., Gaubert, S., Walsh, C.: The Max-Plus Martin boundary. Documenta Mathematica 14, 195–240 (2009)MATHMathSciNetGoogle Scholar
  3. 3.
    Ambrosio, L., Gigli, N., Savaré, G.: Calculus and heat flow in metric measure spaces and applications to spaces with Ricci bounds from below. Inventiones Mathematicae 195(2), 289–391 (2014)MATHMathSciNetGoogle Scholar
  4. 4.
    Angulo, J., Velasco-Forero, S.: Stochastic morphological filtering and bellman-maslov chains. In: Hendriks, C.L.L., Borgefors, G., Strand, R. (eds.) ISMM 2013. LNCS, vol. 7883, pp. 171–182. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  5. 5.
    Angulo, J., Velasco-Forero, S.: Riemannian Mathematical Morphology. Pattern Recognition Letters 47, 93–101 (2014)CrossRefGoogle Scholar
  6. 6.
    Belkin, M., Sun, J., Wang, Y.: Constructing laplace operator from point clouds in \(R^d\). In: Proc. of ACM Symp. on Discrete Algorithms, pp. 1031–1040 (2009)Google Scholar
  7. 7.
    Burgeth, B., Weickert, J.: An Explanation for the Logarithmic Connection between Linear and Morphological System Theory. International Journal of Computer Vision 64(2–3), 157–169 (2005)CrossRefGoogle Scholar
  8. 8.
    Calderon, S., Boubekeur, T.: Point Morphology. ACM Transactions on Graphics (Proc. SIGGRAPH 2014) (2014)Google Scholar
  9. 9.
    Crane, K., Weischedel, C., Wardetzky, M.: Geodesics in Heat: A New Approach to Computing Distance Based on Heat Flow. ACM Trans. Graph. 32(5) (2013)Google Scholar
  10. 10.
    Grigor’yan, A.: Heat Kernel and Analysis on Manifolds. American Mathematical Society (2012)Google Scholar
  11. 11.
    Grigor’yan, A., Hu, J., Lau, K.-S.: Heat kernels on metric measure spaces. In: Geometry and Analysis on Fractals. Springer Proceedings in Mathematics & Statistics, vol. 88, pp. 147–208 (2014)Google Scholar
  12. 12.
    Heijmans, H.J.A.M.: Morphological image operators. Academic Press, Boston (1994)MATHGoogle Scholar
  13. 13.
    Jackway, P.T., Deriche, M.: Scale-Space Properties of the Multiscale Morphological Dilation-Erosion. IEEE Trans. Pattern Anal. Mach. Intell. 18(1), 38–51 (1996)CrossRefGoogle Scholar
  14. 14.
    Liang, J., Zhao, H.: Methods and Algorithms for Scientific Computing Solving Partial Differential Equations on Point Clouds. SIAM J. Sci. Comput. 35(3), A1461–A1486 (2013)CrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    Litvinov, G.L., Maslov, V.P., Shpiz, G.B.: Idempotent Functional Analysis: An Algebraic Approach. Mathematical Notes 69(5–6), 696–729 (2001)CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    Lott, J., Villani, C.: Hamilton-Jacobi semigroup on length spaces and applications. Journal de Math. Pures et Appliquées 88, 219–229 (2007)CrossRefMATHMathSciNetGoogle Scholar
  17. 17.
    Maragos, P.: Differential morphology and image processing. IEEE Transactions on Image Processing 5(1), 922–937 (1996)CrossRefMathSciNetGoogle Scholar
  18. 18.
    Maslov, V.: Méthodes opératorielles. Editions Mir (1987)Google Scholar
  19. 19.
    Mémoli, F., Sapiro, G.: A theoretical and computational framework for isometry invariant recognition of point cloud data. Foundations of Computational Mathematics 5(3), 313–347 (2005)CrossRefMATHMathSciNetGoogle Scholar
  20. 20.
    Del Moral, P.: Maslov optimization theory: optimality versus randomness. In: Kolokoltsov, V.N., Maslov, V.P. (eds.) Idempotency Analysis and its Applications. Kluwer Publishers (1997)Google Scholar
  21. 21.
    Serra, J.: Image Analysis and Mathematical Morphology. Theoretical Advances, vol. II. Academic Press, London (1988)Google Scholar
  22. 22.
    Sobolevskii, A.N.: Aubry-Mather theory and idempotent eigenfunctions of Bellman operator. Commun. Contemp. Math. 1, 517–533 (1999)CrossRefMATHMathSciNetGoogle Scholar
  23. 23.
    Spira, A., Kimmel, R., Sochen, N.: A short-time Beltrami kernel for smoothing images and manifolds. IEEE Trans. on Image Processing 16(6), 1628–1636 (2007)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.CMM-Centre de Morphologie Mathématique, MINES ParisTechPSL-Research UniversityParisFrance

Personalised recommendations