Skip to main content

Invertible Orientation Scores of 3D Images

  • Conference paper
  • First Online:
Scale Space and Variational Methods in Computer Vision (SSVM 2015)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9087))

Abstract

The enhancement and detection of elongated structures in noisy image data is relevant for many biomedical applications. To handle complex crossing structures in 2D images, 2D orientation scores \(U: \mathbb {R} ^ 2\times S ^ 1 \rightarrow \mathbb {R}\) were introduced, which already showed their use in a variety of applications. Here we extend this work to 3D orientation scores \(U: \mathbb {R} ^ 3 \times S ^ 2\rightarrow \mathbb {R}\). First, we construct the orientation score from a given dataset, which is achieved by an invertible coherent state type of transform. For this transformation we introduce 3D versions of the 2D cake-wavelets, which are complex wavelets that can simultaneously detect oriented structures and oriented edges. For efficient implementation of the different steps in the wavelet creation we use a spherical harmonic transform. Finally, we show some first results of practical applications of 3D orientation scores.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ali, S.T.: A general theorem on square-integrability: Vector coherent states. J. Math. Phys. 39(8), 3954 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  2. Ali, ST., Antoine, J.-P., Gazeau, J.-P.: Coherent states, wavelets, and their generalizations. Springer (2014)

    Google Scholar 

  3. Bekkers, E., Duits, R.: A multi-orientation analysis approach to retinal vessel tracking. JMIV (2014)

    Google Scholar 

  4. Burgeth, B., Didas, S., Weickert, J.: A general structure tensor concept and coherence-enhancing diffusion filtering for matrix fields. In: Visualization and Processing of Tensor Fields, pp. 305–324. Springer, Berlin (2009)

    Google Scholar 

  5. Burgeth, B., Pizarro, L., Didas, S., Weickert, J.: 3D-Coherence-enhancing diffusion filtering for matrix fields. In: Mathematical Methods for Signal and Image Analysis and Representation, pp. 49–63. Springer, London (2012)

    Google Scholar 

  6. Creusen, E.J., Duits, R., Dela Haije, T.C.J.: Numerical Schemes for Linear and Non-linear Enhancement of DW-MRI. In: Bruckstein, A.M., ter Haar Romeny, B.M., Bronstein, A.M., Bronstein, M.M. (eds.) SSVM 2011. LNCS, vol. 6667, pp. 14–25. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  7. Descoteaux, M., Angelino, E., Fitzgibbons, S., Deriche, R.: Regularized, fast, and robust analytical Q-ball imaging. MRM 58(3), 497–510 (2007)

    Article  Google Scholar 

  8. Duits, R.: Perceptual organization in image analysis. PhD thesis, Technische Universiteit Eindhoven (2005)

    Google Scholar 

  9. Duits, R., Franken, E.M.: Left-invariant diffusions on the space of positions and orientations and their application to crossing-preserving smoothing of HARDI images. IJCV 92(3), 231–264 (2010)

    Article  MathSciNet  Google Scholar 

  10. Duits, R., Janssen, M.H.J., Hannink, J., Sanguinetti, G.R.: Locally Adaptive Frames in the Roto-Translation Group and their Applications in Medical Imaging. arXiv preprint: http://arxiv.org/abs/1502.0800arXiv:1502.08002

  11. Franken, E.M., Duits, R.: Crossing-preserving coherence-enhancing diffusion on invertible orientation scores. IJCV 85(3), 253–278 (2009)

    Article  Google Scholar 

  12. Führ, F.: Abstract harmonic analysis of continuous wavelet transforms. Lecture Notes in Mathematics 1863 (2005)

    Google Scholar 

  13. Grossmann, A., Morlet, J., Paul, T.: Transforms associated to square integrable group representations. I. General results. J. Math. Phys. 26(10), 2473 (1985)

    MATH  MathSciNet  Google Scholar 

  14. Kalitzin, S.N., ter Haar Romeny, B.M., Viergever, M.A.: Invertible apertured orientation filters in image analysis. IJCV 31, 145–158 (1999)

    Google Scholar 

  15. Lee, T.S.: Image representation using 2D Gabor wavelets. IEEE TPAMI 18(10) (1996)

    Google Scholar 

  16. Martens, F.J.L.: Spaces of analytical functions on inductive/projective limits of Hilbert spaces. PhD thesis, Technische Universiteit Eindhoven (1988)

    Google Scholar 

  17. Sharma, U., Duits, R.: Left-invariant evolutions of wavelet transforms on the similitude group (accepted for publication ACHA). doi:10.1016/j.acha.2014.09.001

  18. Weickert, J.: Coherence-enhancing diffusion filtering. IJCV 31, 111–127 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michiel Janssen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Janssen, M., Duits, R., Breeuwer, M. (2015). Invertible Orientation Scores of 3D Images. In: Aujol, JF., Nikolova, M., Papadakis, N. (eds) Scale Space and Variational Methods in Computer Vision. SSVM 2015. Lecture Notes in Computer Science(), vol 9087. Springer, Cham. https://doi.org/10.1007/978-3-319-18461-6_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18461-6_45

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18460-9

  • Online ISBN: 978-3-319-18461-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics