A Variational Model for Color Assignment

  • Jan Henrik Fitschen
  • Mila Nikolova
  • Fabien Pierre
  • Gabriele Steidl
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9087)

Abstract

Color image enhancement is a challenging task in digital imaging with many applications. This paper contributes to image enhancement methods. We propose a new variational model for color improvement in the RGB space based on a desired target intensity image. Our model improves the visual quality of the color image while it preserves the range and takes the hue of the original, badly exposed image into account without amplifying its color artifacts. To approximate the hue of the original image we use the fact that affine transforms are hue preserving. To cope with the noise in the color channels we design a particular coupled TV regularization term. Since the target intensity of the image is unaltered our model respects important image structures. Numerical results demonstrate the very good performance of our method.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alleysson, D., Süsstrunk, S., Herault, J.: Linear demosaicing inspired by the human visual system. IEEE Transactions on Image Processing 14(4), 439–449 (2005)CrossRefGoogle Scholar
  2. 2.
    Bertalmío, M., Caselles, V., Provenzi, E., Rizzi, A.: Perceptual color correction through variational techniques. IEEE Transactions on Image Processing 16(4), 1058–1072 (2007)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Burger, M., Sawatzky, A., Steidl, G.: First Order Algorithms in Variational Image Processing (2014). arXiv preprint arXiv:1412.4237
  4. 4.
    Chambolle, A., Pock, T.: A First-Order Primal-Dual Algorithm for Convex Problems with Applications to Imaging. Journal of Mathematical Imaging and Vision 40(1), 120–145 (2011)CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Condat, L.: A new color filter array with optimal properties for noiseless and noisy color image acquisition. IEEE Transactions on Image Processing 20(8), 2200–2210 (2011)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Getreuer, P.: Automatic color enhancement (ACE) and its fast implementation. Image Processing On Line (2012). doi:10.5201/ipol.2012.g-ace
  7. 7.
    Goldluecke, B., Strekalovskiy, E., Cremers, D.: The natural total variation which arises from geometric measure theory. SIAM Journal on Imaging Sciences 5(2), 537–563 (2012)CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Gonzalez, R., Woods, R.: Digital Image Processing, 3rd edn. NJ, Prentice-Hall (2007)Google Scholar
  9. 9.
    Grimalt, J.D., Moeller, M., Sbert, C., Cremers, D.: A framework for nonlocal vectorial total variation based on \(\ell ^{p, q, r}\)-norms. In: Tai, X.-C., Bae, E., Chan, T.F., Lysaker, M. (eds.) MMCVPR 2015. LNCS, vol. 8932, pp. 141–154. Springer International Publishing, Switzerland (2015)CrossRefGoogle Scholar
  10. 10.
    Häuser, S., Nikolova, M., Steidl, G.: Hue and range preserving RGB image enhancement. In: Preparation (2015). http://www.mathematik.uni-kl.de/imagepro/software/rgb-hp-enhance/
  11. 11.
    Land, E.H.: The retinex theory of color vision. Scientific American 237(6) (1977)Google Scholar
  12. 12.
    Liang, J., Zhang, X.: Retinex by higher order total variation \(L^1\) decomposition. Journal of Mathematical Imaging and Vision (2015)Google Scholar
  13. 13.
    Limare, N., Petro, A.B., Sbert, C., Morel, J.M.: Retinex Poisson equation: a model for color perception. Image Processing On Line 1 (2011)Google Scholar
  14. 14.
    Naik, S.F., Murthy, C.A.: Hue-preserving color image enhancement without gamut problem. IEEE Transactions on Image Processing 12(12), 1591–1598 (2003)CrossRefGoogle Scholar
  15. 15.
    Nikolova, M., Wen, Y.-W., Chan, R.: Exact histogram specification for digital images using a variational approach. Journal of Mathematical Imaging and Vision 46(3), 309–325 (2013)CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    Nikolova, M.: A fast algorithm for exact histogram specification. Simple extension to colour images. In: Pack, T. (ed.) SSVM 2013. LNCS, vol. 7893, pp. 174–185. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  17. 17.
    Nikolova, M., Steidl, G.: Fast sorting algorithm for exact histogram specification, Preprint hal-00870501 (2013)Google Scholar
  18. 18.
    Nikolova, M., Steidl, G.: Fast hue and range preserving histogram specification: theory and new algorithms for color image enhancement. IEEE Transactions on Image Processing 23(9), 4087–4100 (2014)CrossRefMathSciNetGoogle Scholar
  19. 19.
    Palma-Amestoy, R., Provenzi, E., Bertalmío, M., Caselles, V.: A perceptually inspired variational framework for color enhancement. IEEE Transactions on Pattern Analysis and and Machine Intelligence 31(3), 458–474 (2009)CrossRefGoogle Scholar
  20. 20.
    Papadakis, N., Provenzi, E., Caselles, V.: A variational model for histogram transfer of color images. IEEE Transactions on Image Processing 30(6), 1682–1695 (2011)CrossRefMathSciNetGoogle Scholar
  21. 21.
    Pock, T., Chambolle, A., Cremers, D., Bischof, H.: A convex relaxation approach for computing minimal partitions. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 810–817 (2009)Google Scholar
  22. 22.
    Rizzi, A., Gatta, C., Marini, D.: A new algorithm for unsupervised global and local color correction. Pattern Recognition Letters 124 (2003)Google Scholar
  23. 23.
    Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1), 259–268 (1992)CrossRefMATHGoogle Scholar
  24. 24.
    Sapiro, G.. Vector-valued active contours. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 680–685 (1996)Google Scholar
  25. 25.
    Sapiro, G., Caselles, V.: Histogram Modification via Differential Equations. Journal of Differential Equations 135(2), 238–268 (1997)CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Jan Henrik Fitschen
    • 1
  • Mila Nikolova
    • 2
  • Fabien Pierre
    • 3
  • Gabriele Steidl
    • 1
  1. 1.Department of MathematicsUniversity of KaiserslauternKaiserslauternGermany
  2. 2.CMLA – CNRS, ENS CachanCachanFrance
  3. 3.University of Bordeaux, CNRS, IMB, UMR 5251, LaBRI, UMR 5800TalenceFrance

Personalised recommendations