Skip to main content

Second Order Minimum Energy Filtering on \({\text {SE}}_{3}\) with Nonlinear Measurement Equations

  • Conference paper
  • First Online:
Scale Space and Variational Methods in Computer Vision (SSVM 2015)

Abstract

Accurate camera motion estimation is a fundamental building block for many Computer Vision algorithms. For improved robustness, temporal consistency of translational and rotational camera velocity is often assumed by propagating motion information forward using stochastic filters. Classical stochastic filters, however, use linear approximations for the non-linear observer model and for the non-linear structure of the underlying Lie Group \({\text {SE}}_{3}\) and have to approximate the unknown posteriori distribution. In this paper we employ a non-linear measurement model for the camera motion estimation problem that incorporates multiple observation equations. We solve the underlying filtering problem using a novel Minimum Energy Filter on \({\text {SE}}_{3}\) and give explicit expressions for the optimal state variables. Experiments on the challenging KITTI benchmark show that, although a simple motion model is only employed, our approach improves rotational velocity estimation and otherwise is on par with the state-of-the-art.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Absil, P.-A., Mahony, R., Sepulchre, R.: Optimization Algorithms on Matrix Manifolds. Princeton University Press (2008)

    Google Scholar 

  2. Athans, M., Falb, P.: Optimal Control. An Introduction to the Theory and Its Applications. McGraw-Hill (1966)

    Google Scholar 

  3. Bain, A., Crisan, D.: Fundamentals of Stochastic Filtering. Springer (2009)

    Google Scholar 

  4. Becker, F., Lenzen, F., Kappes, J.H., Schnörr, C.: Variational Recursive Joint Estimation of Dense Scene Structure and Camera Motion from Monocular High Speed Traffic Sequences. IJCV 105, 269–297 (2013)

    Article  MATH  Google Scholar 

  5. Brigo, D., Hanzon, B., Le Gland, F.: Approximate Nonlinear Filtering by Projection on Exponential Manifolds of Densities. Bernoulli 5(3), 495–534 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  6. Daum, F.: Nonlinear Filters: Beyond the Kalman Filter. IEEE A&E Systems Magazin 20(8, Part 2), 57–69 (2005)

    Article  Google Scholar 

  7. Daum, F., Huang, J.: Curse of dimensionality and particle filters. In: Aerospace Conference (2003)

    Google Scholar 

  8. Geiger, A., Ziegler, J., Stiller, C.: Stereoscan: Dense 3D Reconstruction in Real-Time. In: Intelligent Vehicles Symposium (IV). IEEE (2011)

    Google Scholar 

  9. Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations. Springer (2006)

    Google Scholar 

  10. Jurdjevic, V.: Geometric control theory. Cambridge University Press (1997)

    Google Scholar 

  11. Kalman, R.E.: A New Approach to Linear Filtering and Prediction Problems. Journal of Fluids Engineering 82(1), 35–45 (1960)

    Google Scholar 

  12. Kitt, B., Geiger, A., Lategahn, H.: Visual odometry based on stereo image sequences with RANSAC-based outlier rejection scheme. In: IV (2010)

    Google Scholar 

  13. Krener, A.J.: The convergence of the minimum energy estimator. In: Kang, W., Borges, C., Xiao, M. (eds.) New Trends in Nonlinear Dynamics and Control and their Applications. LNCIS, vol. 295, pp. 187–208. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  14. Kwon, J., Choi, M., Park, F.C., Chun, C.: Particle Filtering on the Euclidean Group: Framework and Applications. Robotica 25(6), 725–737 (2007)

    Article  Google Scholar 

  15. Markley, F.L.: Attitude Error Representations for Kalman Filtering. Journal of guidance, control, and dynamics 26(2), 311–317 (2003)

    Article  MathSciNet  Google Scholar 

  16. Mortensen, R.E.: Maximum-Likelihood Recursive Nonlinear Filtering. J. Opt. Theory Appl. 2(6), 386–394 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  17. Saccon, A., Trumpf, J., Mahony, R., Aguiar, A.P.: Second-order-optimal filters on lie groups. In: CDC (2013)

    Google Scholar 

  18. Sun, D., Roth, S., Black, M.J.: A Quantitative Analysis of Current Practices in Optical Flow Estimation and the Principles Behind them. IJCV 106(2), 115–137 (2014)

    Article  Google Scholar 

  19. Yamaguchi, K., McAllester, D., Urtasun, R.: Efficient joint segmentation, occlusion labeling, stereo and flow estimation. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014, Part V. LNCS, vol. 8693, pp. 756–771. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  20. Zamani, M., Trumpf, J., Mahoney, M.: A second order minimum-energy filter on the special orthogonal group. In: Proc. ACC (2012)

    Google Scholar 

  21. Žefran, M., Kumar, V., Croke, C.: Metrics and Connections for Rigid-Body Kinematics. The International Journal of Robotics Research 18(2), 242–1 (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes Berger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Berger, J., Neufeld, A., Becker, F., Lenzen, F., Schnörr, C. (2015). Second Order Minimum Energy Filtering on \({\text {SE}}_{3}\) with Nonlinear Measurement Equations. In: Aujol, JF., Nikolova, M., Papadakis, N. (eds) Scale Space and Variational Methods in Computer Vision. SSVM 2015. Lecture Notes in Computer Science(), vol 9087. Springer, Cham. https://doi.org/10.1007/978-3-319-18461-6_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18461-6_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18460-9

  • Online ISBN: 978-3-319-18461-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics