The Morphological Equivalents of Relativistic and Alpha-Scale-Spaces

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9087)

Abstract

The relations between linear system theory and mathematical morphology are mainly understood on a pure convolution / dilation level. A formal connection on the level of differential or pseudo-differential equations is still missing. In our paper we close this gap. We establish the sought relation by means of infinitesimal generators, exploring essential properties of the slope and a modified Cramér transform. As an application of our general theory, we derive the morphological counterparts of relativistic scale-spaces and of \(\alpha \)-scale-spaces for \(\alpha \in [\frac{1}{2}, \infty )\). Our findings are illustrated by experiments.

Keywords

Mathematical morphology Alpha-scale-spaces Relativistic scale-spaces Cramér transform Slope transform 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alvarez, L., Guichard, F., Lions, P.-L., Morel, J.-M.: Axioms and fundamental equations in image processing. Archive for Rational Mechanics and Analysis 123, 199–257 (1993)CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Brockett, R.W., Maragos, P.: Evolution equations for continuous-scale morphology. In: Proc. IEEE International Conference on Acoustics, Speech and Signal Processing, vol. 3, pp. 125–128, San Francisco, CA (March 1992)Google Scholar
  3. 3.
    Burgeth, B., Didas, S., Weickert, J.: The Bessel Scale-Space. In: Fogh Olsen, O., Florack, L.M.J., Kuijper, A. (eds.) DSSCV 2005. LNCS, vol. 3753, pp. 84–95. Springer, Heidelberg (2005) CrossRefGoogle Scholar
  4. 4.
    Burgeth, B., Didas, S., Weickert, J.: Relativistic scale-spaces. In: Kimmel, R., Sochen, N.A., Weickert, J. (eds.) Scale-Space 2005. LNCS, vol. 3459, pp. 1–12. Springer, Heidelberg (2005) CrossRefGoogle Scholar
  5. 5.
    Burgeth, B., Weickert, J.: An explanation for the logarithmic connection between linear and morphological system theory. International Journal of Computer Vision 64(2/3), 157–169 (2005)CrossRefGoogle Scholar
  6. 6.
    Didas, S., Burgeth, B., Imiya, A., Weickert, J.: Regularity and scale-space properties of fractional high order linear filtering. In: Kimmel, R., Sochen, N.A., Weickert, J. (eds.) Scale-Space 2005. LNCS, vol. 3459, pp. 13–25. Springer, Heidelberg (2005) CrossRefGoogle Scholar
  7. 7.
    Dorst, L., van den Boomgaard, R.: Morphological signal processing and the slope transform. Signal Processing 38, 79–98 (1994)CrossRefGoogle Scholar
  8. 8.
    Duits, R., Florack, L., de Graaf, J., ter Haar Romeny, B.: On the axioms of scale space theory. Journal of Mathematical Imaging and Vision 20, 267–298 (2004)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Felsberg, M., Sommer, G.: Scale adaptive filtering derived from the laplace equation. In: Radig, B., Florczyk, S. (eds.) DAGM 2001. LNCS, vol. 2191, pp. 124–131. Springer, Heidelberg (2001) CrossRefGoogle Scholar
  10. 10.
    Florack, L.: Image Structure. Computational Imaging and Vision, vol. 10. Kluwer, Dordrecht (1997)Google Scholar
  11. 11.
    Iijima, T.: Basic theory on normalization of pattern (in case of typical one-dimensional pattern). Bulletin of the Electrotechnical Laboratory 26, 368–388 (1962). (In Japanese)Google Scholar
  12. 12.
    Koenderink, J.J.: The structure of images. Biological Cybernetics 50, 363–370 (1984)CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    Lindeberg, T.: Scale-Space Theory in Computer Vision. Kluwer, Boston (1994) CrossRefGoogle Scholar
  14. 14.
    Lyons, R.G.: Understanding Digital Signal Processing. Prentice Hall, Englewood Cliffs (2004) Google Scholar
  15. 15.
    Maragos, P.: Morphological systems: Slope transforms and max-min difference and differential equations. Signal Processing 38(1), 57–77 (1994)CrossRefMATHGoogle Scholar
  16. 16.
    Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1970) MATHGoogle Scholar
  17. 17.
    van den Boomgaard, R.: The morphological equivalent of the Gauss convolution. Nieuw Archief Voor Wiskunde 10(3), 219–236 (1992)MATHMathSciNetGoogle Scholar
  18. 18.
    van den Boomgaard, R., Dorst, L.: The morphological equivalent of Gaussian scale-space. In: Sporring, J., Nielsen, M., Florack, L., Johansen, P. (eds.) Gaussian Scale-Space Theory. Computational Imaging and Vision, vol. 8, pp. 203–220. Kluwer, Dordrecht (1997)CrossRefGoogle Scholar
  19. 19.
    van den Boomgaard, R., Smeulders, A.: The morphological structure of images: The differential equations of morphological scale-space. IEEE Transactions on Pattern Analysis and Machine Intelligence 16, 1101–1113 (1994)CrossRefGoogle Scholar
  20. 20.
    Weickert, J., Ishikawa, S., Imiya, A.: Linear scale-space has first been proposed in Japan. Journal of Mathematical Imaging and Vision 10(3), 237–252 (1999)CrossRefMATHMathSciNetGoogle Scholar
  21. 21.
    Witkin, A.P.: Scale-space filtering. In: Proc. Eighth International Joint Conference on Artificial Intelligence, vol. 2, pp. 945–951, Karlsruhe, West Germany (August 1983)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Mathematical Image Analysis Group, Faculty of Mathematics and Computer ScienceSaarland UniversitySaarbrückenGermany

Personalised recommendations