Artifact-Free Variational MPEG Decompression

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9087)

Abstract

We propose a variational method for artifact-free video decompression that is capable of processing any MPEG-2 encoded movie. The method extracts, from a given MPEG-2 file, a set of admissible image sequences and minimizes an artifact-penalizing spatio-temporal regularization functional over this set, giving an optimal decompressed image sequence. For regularization, we use the infimal convolution of spatio-temporal Total Generalized Variation functionals (ICTGV). Numerical experiments on MPEG encoded files show that our approach significantly increases image quality compared to standard decompression.

Keywords

MPEG decompression Image sequence regularization Total generalized variation Infimal convolution type functionals 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aubert, G., Kornprobst, P.: Mathematical Problems in Image Processing. Springer (2006)Google Scholar
  2. 2.
    Bredies, K., Holler, M.: A total variation-based JPEG decompression model. SIAM J. Imag. Sci. 5(1), 366–393 (2012)CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Bredies, K., Holler, M.: Artifact-free decompression and zooming of JPEG compressed images with total generalized variation. In: Csurka, G., Kraus, M., Laramee, R.S., Richard, P., Braz, J. (eds.) VISIGRAPP 2012. CCIS, vol. 359, pp. 242–258. Springer, Heidelberg (2013) Google Scholar
  4. 4.
    Bredies, K., Holler, M.: Regularization of linear inverse problems with total generalized variation. J. Inverse Ill-Posed Probl. (2014). doi:10.1515/jip-2013-0068
  5. 5.
    Bredies, K., Kunisch, K., Pock, T.: Total generalized variation. SIAM J. Imag. Sci. 3(3), 492–526 (2010)CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to imaging. J. Math. Imaging Vision 40, 120–145 (2011)CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Ekeland, I., Témam, R.: Convex Analysis and Variational Problems. SIAM (1999)Google Scholar
  8. 8.
    Holler, M., Kunisch, K.: On infimal convolution of TV-type functionals and applications to video and image reconstruction. SIAM J. Imag. Sci. 7(4), 2258–2300 (2014)CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Kocovski, B., Kartalov, T., Ivanovski, Z., Panovski, L.: An adaptive deblocking algorithm for low bit-rate video. In: 3rd International Symposium on ISCCSP 2008, pp. 888–893, March 2008Google Scholar
  10. 10.
  11. 11.
    Middlebury optical flow dataset. http://vision.middlebury.edu/flow/
  12. 12.
    Schaeffer, H., Yang, Y., Osher, S.: Space-time regularization for video decompression (2014). PreprintGoogle Scholar
  13. 13.
    Schrijver, A.: Theory of Linear and Integer Programming. John Wiley & Sons (1986)Google Scholar
  14. 14.
    Arizona State University. Video trace library. http://trace.eas.asu.edu/
  15. 15.
    Zhong, S.: Image coding with optimal reconstruction. International Conference on Image Processing 1, 161–164 (1997)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Institute for Mathematics and Scientific ComputingUniversity of GrazGrazAustria

Personalised recommendations