Total Variation Restoration of Images Corrupted by Poisson Noise with Iterated Conditional Expectations

  • Rémy Abergel
  • Cécile Louchet
  • Lionel MoisanEmail author
  • Tieyong Zeng
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9087)


Interpreting the celebrated Rudin-Osher-Fatemi (ROF) model in a Bayesian framework has led to interesting new variants for Total Variation image denoising in the last decade. The Posterior Mean variant avoids the so-called staircasing artifact of the ROF model but is computationally very expensive. Another recent variant, called TV-ICE (for Iterated Conditional Expectation), delivers very similar images but uses a much faster fixed-point algorithm. In the present work, we consider the TV-ICE approach in the case of a Poisson noise model. We derive an explicit form of the recursion operator, and show linear convergence of the algorithm, as well as the absence of staircasing effect. We also provide a numerical algorithm that carefully handles precision and numerical overflow issues, and show experiments that illustrate the interest of this Poisson TV-ICE variant.


Poisson noise removal Image denoising Total variation Posterior mean Marginal conditional mean Staircasing effect Fixed-point algorithm Incomplete gamma function 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1), 259–268 (1992)CrossRefzbMATHGoogle Scholar
  2. 2.
    Caselles, V., Chambolle, A., Novaga, M.: Total variation in imaging. In: Handbook of Mathematical Methods in Imaging, pp. 1016–1057. Springer, New York (2011)Google Scholar
  3. 3.
    Chambolle, A., Caselles, V., Cremers, D., Novaga, M., Pock, T.: An introduction to total variation for image analysis. Theoretical foundations and numerical methods for sparse recovery 9, 263–340 (2010)MathSciNetGoogle Scholar
  4. 4.
    Darbon, J., Sigelle, M.: Image restoration with discrete constrained total variation part I: Fast and exact optimization. J. Math. Imag. Vis. 26(3), 261–276 (2007)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to imaging. J. Math. Imag. Vis. 40(1), 120–145 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Buades, A., Coll, B., Morel, J.-M.: A review of image denoising algorithms, with a new one. Multiscale Model. Simul. 4(2), 490–530 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K.: Image denoising by sparse 3-D transform-domain collaborative filtering. IEEE Trans. Image Processing 16(8), 2080–2095 (2007)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Louchet, C., Moisan, L.: Total variation denoising using posterior expectation. In: Proc, European Signal Processing Conf (2008)Google Scholar
  9. 9.
    Louchet, C., Moisan, L.: Posterior Expectation of the Total Variation model: Properties and Experiments. SIAM J. Imaging Sci. 6(4), 2640–2684 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Louchet, C., Moisan, L.: Total variation denoising using iterated conditional expectation. In: Proc, European Signal Processing Conf (2014)Google Scholar
  11. 11.
    Setzer, S., Steidl, G., Teuber, T.: Deblurring Poissonian images by split Bregman techniques. J. Vis. Comm. Image Representation 21(3), 193–199 (2010)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Deledalle, C., Tupin, F., Denis, L.: Poisson NL means: Unsupervised non local means for poisson noise. In: Proc. Int. Conf. Imag. Processing, pp. 801–804 (2010)Google Scholar
  13. 13.
    Schmidt, K.D.: On the covariance of monotone functions of a random variable. Unpublished note, University of Dresden (2003)Google Scholar
  14. 14.
    Olver, F.W.J., Lozier, D.W., Boisvert, R.F., Clark, C.W. (eds.): NIST Handbook of Mathematical Functions. Cambridge University Press, New York (2010)zbMATHGoogle Scholar
  15. 15.
    NIST Digital Library of Mathematical Functions (2014). (release 1.0.9 of August 29, 2014)
  16. 16.
    Cuyt, A., Petersen, V.B., Verdonk, B., Waadeland, H., Jones, W.B.: Handbook of continued fractions for special functions. Springer, New York (2008)zbMATHGoogle Scholar
  17. 17.
    Jones, W.B., Thron, W.J.: Continued Fractions: Analytic Theory and Applications. Encyclopedia of Mathematics and its Applications, vol. 11. Addison-Wesley Publishing Co., Reading, MA (1980)Google Scholar
  18. 18.
    Numerical recipes: The art of scientific computing, 2nd edn. Cambridge University (2007)Google Scholar
  19. 19.
    Abramowitz, M., Stegun, I.A.: Handbook of mathematical functions: with formulas, graphs, and mathematical tables. Courier Dover Publications no. 55 (1972)Google Scholar
  20. 20.
    Csiszar, I.: Why least squares and maximum entropy? An axiomatic approach to inference for linear inverse problems. Ann. Stat. 19, 2032–2066 (1991)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Rémy Abergel
    • 1
  • Cécile Louchet
    • 2
  • Lionel Moisan
    • 1
    Email author
  • Tieyong Zeng
    • 3
  1. 1.MAP5 (CNRS UMR 8145)Université Paris DescartesParisFrance
  2. 2.MAPMO (CNRS UMR 6628)Université d’OrléansParisFrance
  3. 3.Department of MathematicsHong Kong Baptist UniversityKowloon TongHong Kong

Personalised recommendations