Some Nonlocal Filters Formulation Using Functional Rearrangements

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9087)

Abstract

We present an exact reformulation of a broad class of nonlocal filters, among which the bilateral filters, in terms of two functional rearrangements: the decreasing and the relative rearrangements.

Independently of the image spatial dimension, these filters are expressed as integral operators defined in a one-dimensional space, corresponding to the level sets measures.

We provide some insight into the properties of this new formulation and show some numerical demonstrations to illustrate them.

Keywords

Neighborhood filter Bilateral filter Decreasing rearrangement Relative rearrangement Denoising Segmentation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adams, A., Baek, J., Davis, M.A.: Fast high-dimensional filtering using the permutohedral lattice. Computer Graphics Forum 29(2), 753–762 (2010)CrossRefGoogle Scholar
  2. 2.
    Álvarez, L., Lions, P.L., Morel, J.M.: Image selective smoothing and edge detection by nonlinear diffusion. ii. Siam J Numer Anal 29(3), 845–866 (1992)CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Álvarez, L., Mazorra, L.: Signal and image restoration using shock filters and anisotropic diffusion. Siam J Numer Anal 31(2), 590–605 (1994)CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    Barash, D.: Fundamental relationship between bilateral filtering, adaptive smoothing, and the nonlinear diffusion equation. IEEE T Pattern Anal 24(6), 844–847 (2002)CrossRefGoogle Scholar
  5. 5.
    Barash, D., Comaniciu, D.: A common framework for nonlinear diffusion, adaptive smoothing, bilateral filtering and mean shift. Image Vision Comput 22(1), 73–81 (2004)CrossRefGoogle Scholar
  6. 6.
  7. 7.
    Buades, A., Coll, B., Morel, J.M.: A review of image denoising algorithms, with a new one. Multiscale Model Sim 4(2), 490–530 (2005)CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Buades, A., Coll, B., Morel, J.M.: Neighborhood filters and pde’s. Numer Math 105(1), 1–34 (2006)CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Buades, A., Coll, B., Morel, J.M.: Image denoising methods. a new nonlocal principle. Siam Rev 52(1), 113–147 (2010)CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    Chang, C.I., Du, Y., Wang, J., Guo, S.M., Thouin, P.: Survey and comparative analysis of entropy and relative entropy thresholding techniques. In: IEE Proceedings-Vision, Image and Signal Processing, vol. 153, pp. 837–850. IET (2006)Google Scholar
  11. 11.
    Chaudhury, K.N., Sage, D., Unser, M.: Fast O(1) bilateral filtering using trigonometric range kernels. TIP 2011 (2011)Google Scholar
  12. 12.
    Durand, F., Dorsey, J.: Fast bilateral filtering for the display of high-dynamic-range images. ACM Siggraph 21, 257–266 (2002)Google Scholar
  13. 13.
    Eisemann, E., Durand, F.: Flash photography enhancement via intrinsic relighting. Siggraph 23(3), 673–678 (2004)CrossRefGoogle Scholar
  14. 14.
    Elad, M.: On the origin of the bilateral filter and ways to improve it. IEEE T Image Process 11(10), 1141–1151 (2002)CrossRefMathSciNetGoogle Scholar
  15. 15.
  16. 16.
    FMRIB Software Library. http://fsl.fmrib.ox.ac.uk/fsl/fslwiki
  17. 17.
    Galiano, G., Velasco, J.: On a non-local spectrogram for denoising one-dimensional signals. Appl Math Comput 244, 859–869 (2014)CrossRefMathSciNetGoogle Scholar
  18. 18.
    Galiano, G., Velasco, J.: Neighborhood filters and the decreasing rearrangement. J Math Imaging Vision (2014). doi:10.1007/s10851-014-0522-3
  19. 19.
    Galiano, G., Velasco, J.: On a fast bilateral filtering formulation using functional rearrangements. arXiv:1406.7128v1 (2015) (submitted)
  20. 20.
    Gilboa, G., Osher, S.: Nonlocal operators with applications to image processing. Multiscale Model Sim 7(3), 1005–1028 (2008)CrossRefMATHMathSciNetGoogle Scholar
  21. 21.
    Hardy, G.H., Littlewood, J.E., Polya, G.: Inequalities. Cambridge, U.P. (1964)Google Scholar
  22. 22.
    Kass, M., Solomon, J.: Smoothed local histogram filters. ACM TOG 29(4), 100:1–100:10 (2010)CrossRefGoogle Scholar
  23. 23.
    Lieb, E.H., Loss, M.: Analysis, vol. 4. American Mathematical Soc. (2001)Google Scholar
  24. 24.
    Nath, S., Agarwal, S., Kazmi, Q.A.: Image histogram segmentation by multi-level thresholding using hill climbing algorithm. Int J Comput Appl 35(1) (2011)Google Scholar
  25. 25.
    Paris, S., Durand, F.: A fast approximation of the bilateral filter using a signal processing approach. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3954, pp. 568–580. Springer, Heidelberg (2006) CrossRefGoogle Scholar
  26. 26.
    Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion. IEEE T Pattern Anal 12(7), 629–639 (1990)CrossRefGoogle Scholar
  27. 27.
    Petschnigg, G., Agrawala, M., Hoppe, H., Szeliski, R., Cohen, M., Toyama, K.: Digital photography with flash and no-flash image pairs. ACM Siggraph 23(3), 664–672 (2004)CrossRefGoogle Scholar
  28. 28.
    Peyré, G.: Image processing with nonlocal spectral bases. Multiscale Model Sim 7(2), 703–730 (2008)CrossRefMATHGoogle Scholar
  29. 29.
    Porikli, F.: Constant time O(1) bilateral filtering. CVPR 2008 (2008)Google Scholar
  30. 30.
    Rakotoson, J.M.: Réarrangement Relatif: Un instrument d’estimations dans les problčmes aux limites, vol 64. Springer (2008)Google Scholar
  31. 31.
    Ram, I., Elad, M., Cohen, I.: Image processing using smooth ordering of its patches. IEEE T Image Process 22(7), 2764–2774 (2013)CrossRefMathSciNetGoogle Scholar
  32. 32.
    Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1), 259–268 (1992)CrossRefMATHGoogle Scholar
  33. 33.
    Singer, A., Shkolnisky, Y., Nadler, B.: Diffusion interpretation of nonlocal neighborhood filters for signal denoising. SIAM J Imaging Sci 2(1), 118–139 (2009)CrossRefMATHMathSciNetGoogle Scholar
  34. 34.
    Smith, S.M., Brady, J.M.: Susan. a new approach to low level image processing. Int J Comput Vision 23(1), 45–78 (1997)CrossRefGoogle Scholar
  35. 35.
    Statistical Parametric Mapping (SPM). http://www.fil.ion.ucl.ac.uk/spm
  36. 36.
    Tomasi, C., Manduchi, R.: Bilateral filtering for gray and color images. In: Sixth International Conference on Computer Vision, pp. 839–846. IEEE (1998)Google Scholar
  37. 37.
    Weiss, B.: Fast median and bilateral filtering. ACM Siggraph 25, 519–526 (2006)CrossRefGoogle Scholar
  38. 38.
    Yang, Q., Tan, K.H., Ahuja, N.: Real-time O(1) bilateral filtering. CVPR 2009 (2009)Google Scholar
  39. 39.
    Yang, Q., Ahuja, N., Tan, K.H.: Constant time median and bilateral filtering. Int J Comput Vis (2014). doi:10.1007/s11263-014-0764-y
  40. 40.
    Yaroslavsky, L.P.: Digital picture processing. An introduction. Springer Verlag, Heidelberg (1985) CrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of MathematicsUniversidad de OviedoOviedoSpain

Personalised recommendations