Skip to main content

Functional Properties of Mitochondria in the Type-1 Cell and Their Role in Oxygen Sensing

  • Chapter
Arterial Chemoreceptors in Physiology and Pathophysiology

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 860))

Abstract

The identity of the oxygen sensor in arterial chemoreceptors has been the subject of much speculation. One of the oldest hypotheses is that oxygen is sensed through oxidative phosphorylation. There is a wealth of data demonstrating that arterial chemoreceptors are excited by inhibitors of oxidative phosphorylation. These compounds mimic the effects of hypoxia inhibiting TASK1/3 potassium channels causing membrane depolarisation calcium influx and neurosecretion. The TASK channels of Type-I cells are also sensitive to cytosolic MgATP. The existence of a metabolic signalling pathway in Type-1 cells is thus established; the contentious issue is whether this pathway is also used for acute oxygen sensing. The main criticism is that because cytochrome oxidase has a high affinity for oxygen (P50 ≈ 0.2 mmHg) mitochondrial metabolism should be insensitive to physiological hypoxia. This argument is however predicated on the assumption that chemoreceptor mitochondria are analogous to those of other tissues. We have however obtained new evidence to support the hypothesis that type-1 cell mitochondria are not like those of other cells in that they have an unusually low affinity for oxygen (Mills E, Jobsis FF, J Neurophysiol 35(4):405–428, 1972; Duchen MR, Biscoe TJ, J Physiol 450:13–31, 1992a). Our data confirm that mitochondrial membrane potential, NADH, electron transport and cytochrome oxidase activity in the Type-1 cell are all highly sensitive to hypoxia. These observations not only provide exceptionally strong support for the metabolic hypothesis but also reveal an unknown side of mitochondrial behaviour.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen LA, Zhao XJ, Caughey W, Poyton RO (1995) Isoforms of yeast cytochrome c oxidase subunit V affect the binuclear reaction center and alter the kinetics of interaction with the isoforms of yeast cytochrome c. J Biol Chem 270(1):110–118

    PubMed  CAS  Google Scholar 

  • Anichkov S, Belen’kii M (1963) Pharmacology of the carotid body chemoreceptors. Pergamon Press, Oxford

    Google Scholar 

  • Biscoe TJ, Duchen MR (1990) Responses of type I cells dissociated from the rabbit carotid body to hypoxia. J Physiol 428:39–59

    PubMed  CAS  PubMed Central  Google Scholar 

  • Biscoe TJ, Purves MJ, Sampson SR (1970) The frequency of nerve impulses in single carotid body chemoreceptor afferent fibres recorded in vivo with intact circulation. J Physiol 208(1):121–131

    PubMed  CAS  PubMed Central  Google Scholar 

  • Buckler KJ (1997) A novel oxygen-sensitive potassium current in rat carotid body type I cells. J Physiol 498(Pt 3):649–662

    PubMed  CAS  PubMed Central  Google Scholar 

  • Buckler KJ (2012) Effects of exogenous hydrogen sulphide on calcium signalling, background (TASK) K channel activity and mitochondrial function in chemoreceptor cells. Pflugers Arch 463(5):743–754

    PubMed  CAS  PubMed Central  Google Scholar 

  • Buckler KJ, Turner PJ (2013) Oxygen sensitivity of mitochondrial function in rat arterial chemoreceptor cells. J Physiol 591(Pt 14):3549–3563

    PubMed  CAS  PubMed Central  Google Scholar 

  • Buckler KJ, Vaughan Jones RD (1994a) Effects of hypercapnia on membrane potential and intracellular calcium in rat carotid body type I cells. J Physiol 478(Pt 1):157–171

    PubMed  PubMed Central  Google Scholar 

  • Buckler KJ, Vaughan Jones RD (1994b) Effects of hypoxia on membrane potential and intracellular calcium in rat neonatal carotid body type I cells. J Physiol 476(3):423–428

    PubMed  CAS  PubMed Central  Google Scholar 

  • Buckler KJ, Vaughan-Jones RD (1998) Effects of mitochondrial uncouplers on intracellular calcium, pH and membrane potential in rat carotid body type I cells. J Physiol 513(Pt 3):819–833

    PubMed  CAS  PubMed Central  Google Scholar 

  • Buckler KJ, Williams BA, Honore E (2000) An oxygen-, acid- and anaesthetic-sensitive TASK-like background potassium channel in rat arterial chemoreceptor cells. J Physiol 525(Pt 1):135–142

    PubMed  CAS  PubMed Central  Google Scholar 

  • Carpenter E, Peers C (1997) Swelling- and cAMP-activated Cl- currents in isolated rat carotid body type I cells. J Physiol 503(Pt 3):497–511

    PubMed  CAS  PubMed Central  Google Scholar 

  • Carpenter E, Peers C (2001) A standing Na+ conductance in rat carotid body type I cells. Neuroreport 12(7):1421–1425

    PubMed  CAS  Google Scholar 

  • Carpenter E, Wyatt CN, Hatton CJ, Bee D, Peers C (1996) Ca2+ channel currents in type I carotid body cells from normoxic and chronically hypoxic rats. Adv Exp Med Biol 410:105–108

    PubMed  CAS  Google Scholar 

  • Cooper CE, Brown GC (2008) The inhibition of mitochondrial cytochrome oxidase by the gases carbon monoxide, nitric oxide, hydrogen cyanide and hydrogen sulfide: chemical mechanism and physiological significance. J Bioenerg Biomembr 40(5):533–539

    PubMed  CAS  Google Scholar 

  • Cooper CE, Giulivi C (2007) Nitric oxide regulation of mitochondrial oxygen consumption II: molecular mechanism and tissue physiology. Am J Physiol Cell Physiol 292(6):C1993–C2003

    PubMed  CAS  Google Scholar 

  • Coxon RV (1966) Regulation of biochemical reactions by oxygen and carbon dioxide. Blackwell, Oxford

    Google Scholar 

  • Dallas ML, Scragg JL, Wyatt CN, Ross F, Hardie DG, Evans AM, Peers C (2009) Modulation of O(2) sensitive K(+) channels by AMP-activated protein kinase. Adv Exp Med Biol 648:57–63

    PubMed  CAS  Google Scholar 

  • Dasso LL, Buckler KJ, Vaughan Jones RD (1997) Muscarinic and nicotinic receptors raise intracellular Ca2+ levels in rat carotid body type I cells. J Physiol 498(Pt 2):327–338

    PubMed  CAS  PubMed Central  Google Scholar 

  • Duchen MR, Biscoe TJ (1992a) Mitochondrial function in type I cells isolated from rabbit arterial chemoreceptors. J Physiol 450:13–31

    PubMed  CAS  PubMed Central  Google Scholar 

  • Duchen MR, Biscoe TJ (1992b) Relative mitochondrial membrane potential and [Ca2+]i in type I cells isolated from the rabbit carotid body. J Physiol 450:33–61

    PubMed  CAS  PubMed Central  Google Scholar 

  • Duchen MR, Caddy KW, Kirby GC, Patterson DL, Ponte J, Biscoe TJ (1988) Biophysical studies of the cellular elements of the rabbit carotid body. Neuroscience 26(1):291–311

    PubMed  CAS  Google Scholar 

  • e Silva MJ, Lewis DL (1995) L- and N-type Ca2+ channels in adult rat carotid body chemoreceptor type I cells. J Physiol 489(Pt 3):689–699

    PubMed  CAS  PubMed Central  Google Scholar 

  • Evans AM, Mustard KJ, Wyatt CN, Peers C, Dipp M, Kumar P, Kinnear NP, Hardie DG (2005) Does AMP-activated protein kinase couple inhibition of mitochondrial oxidative phosphorylation by hypoxia to calcium signaling in O2-sensing cells? J Biol Chem 280(50):41504–41511

    PubMed  CAS  Google Scholar 

  • Fidone SJ, Gonzalez C (1986) Initiation and control of chemoreceptor activity in the carotid body. American Physiological Society, Bethesda

    Google Scholar 

  • Fidone S, Gonzalez C, Yoshizaki K (1982) Effects of low oxygen on the release of dopamine from the rabbit carotid body in vitro. J Physiol 333:93–110

    PubMed  CAS  PubMed Central  Google Scholar 

  • Gnaiger E (2001) Bioenergetics at low oxygen: dependence of respiration and phosphorylation on oxygen and adenosine diphosphate supply. Respir Physiol 128(3):277–297

    PubMed  CAS  Google Scholar 

  • Gonzalez C, Almaraz L, Obeso A, Rigual R (1994) Carotid body chemoreceptors: from natural stimuli to sensory discharges. Physiol Rev 74(4):829–898

    PubMed  CAS  Google Scholar 

  • Hajnoczky G, Robb-Gaspers LD, Seitz MB, Thomas AP (1995) Decoding of cytosolic calcium oscillations in the mitochondria. Cell 82(3):415–424

    PubMed  CAS  Google Scholar 

  • Hall CN, Garthwaite J (2009) What is the real physiological NO concentration in vivo? Nitric Oxide 21(2):92–103

    PubMed  CAS  PubMed Central  Google Scholar 

  • Hardie DG (2011) AMP-activated protein kinase: an energy sensor that regulates all aspects of cell function. Genes Dev 25(18):1895–1908

    PubMed  CAS  PubMed Central  Google Scholar 

  • Heymans C, Bouckaert JJ, Dautrebande L (1931) Sinus carotidien et reflexes respiratoires: sensibilite des sinus carotidiens aux substances chimiques. Action stimulante respiratoire reflexe du sulfure de sodium, du cyanure de potassium, de la nicotine et de la lobeline. Arch Int Pharmacodyn Ther 40:54–91

    CAS  Google Scholar 

  • Kang D, Wang J, Hogan JO, Vennekens R, Freichel M, White C, Kim D (2014) Increase in cytosolic Ca2+ produced by hypoxia and other depolarizing stimuli activates a non-selective cation channel in chemoreceptor cells of rat carotid body. J Physiol 592(Pt 9):1975–1992

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kim D, Cavanaugh EJ, Kim I, Carroll JL (2009) Heteromeric TASK-1/TASK-3 is the major oxygen-sensitive background K+ channel in rat carotid body glomus cells. J Physiol 587(Pt 12):2963–2975

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kim D, Kang D, Martin EA, Kim I, Carroll JL (2014) Effects of modulators of AMP-activated protein kinase on TASK-1/3 and intracellular Ca(2+) concentration in rat carotid body glomus cells. Respir Physiol Neurobiol 195:19–26

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kreneisz O, Benoit JP, Bayliss DA, Mulkey DK (2009) AMP-activated protein kinase inhibits TREK channels. J Physiol 587(Pt 24):5819–5830

    PubMed  CAS  PubMed Central  Google Scholar 

  • Lahiri S, Rumsey WL, Wilson DF, Iturriaga R (1993) Contribution of in vivo microvascular PO2 in the cat carotid body chemotransduction. J Appl Physiol 75(3):1035–1043

    PubMed  CAS  Google Scholar 

  • Lopez Lopez JR, De Luis DA, Gonzalez C (1993) Properties of a transient K+ current in chemoreceptor cells of rabbit carotid body. J Physiol 460:15–32

    PubMed  CAS  PubMed Central  Google Scholar 

  • Lopez Lopez JR, Gonzalez C, Perez Garcia MT (1997) Properties of ionic currents from isolated adult rat carotid body chemoreceptor cells: effect of hypoxia. J Physiol 499(Pt 2):429–441

    PubMed  CAS  PubMed Central  Google Scholar 

  • Mason MG, Nicholls P, Wilson MT, Cooper CE (2006) Nitric oxide inhibition of respiration involves both competitive (heme) and noncompetitive (copper) binding to cytochrome c oxidase. Proc Natl Acad Sci U S A 103(3):708–713

    PubMed  CAS  PubMed Central  Google Scholar 

  • McCormack JG, Denton RM (1989) The role of Ca2+ ions in the regulation of intramitochondrial metabolism and energy production in rat heart. Mol Cell Biochem 89(2):121–125

    PubMed  CAS  Google Scholar 

  • Mills E, Jobsis FF (1970) Simultaneous measurement of cytochrome a3 reduction and chemoreceptor afferent activity in the carotid body. Nature 225(238):1147–1149

    PubMed  CAS  Google Scholar 

  • Mills E, Jobsis FF (1972) Mitochondrial respiratory chain of carotid body and chemoreceptor response to changes in oxygen tension. J Neurophysiol 35(4):405–428

    PubMed  CAS  Google Scholar 

  • Montoro RJ, Urena J, Fernandez Chacon R, Alvarez de Toledo G, Lopez Barneo J (1996) Oxygen sensing by ion channels and chemotransduction in single glomus cells. J Gen Physiol 107(1):133–143

    PubMed  CAS  Google Scholar 

  • Mulligan E, Lahiri S (1982) Separation of carotid body chemoreceptor responses to O2 and CO2 by oligomycin and by antimycin A. Am J Physiol 242(3):C200–C206

    PubMed  CAS  Google Scholar 

  • Mulligan E, Lahiri S, Storey BT (1981) Carotid body O2 chemoreception and mitochondrial oxidative phosphorylation. J Appl Physiol 51(2):438–446

    PubMed  CAS  Google Scholar 

  • Nurse CA (2014) Synaptic and paracrine mechanisms at carotid body arterial chemoreceptors. J Physiol 592(16):3419–3426

    PubMed  CAS  PubMed Central  Google Scholar 

  • Olson KR (2011) Hydrogen sulfide is an oxygen sensor in the carotid body. Respir Physiol Neurobiol 179(2–3):103–110

    PubMed  CAS  Google Scholar 

  • Olson KR, Whitfield NL (2010) Hydrogen sulfide and oxygen sensing in the cardiovascular system. Antioxid Redox Signal 12(10):1219–1234

    PubMed  CAS  Google Scholar 

  • Olson KR, Dombkowski RA, Russell MJ, Doellman MM, Head SK, Whitfield NL, Madden JA (2006) Hydrogen sulfide as an oxygen sensor/transducer in vertebrate hypoxic vasoconstriction and hypoxic vasodilation. J Exp Biol 209(Pt 20):4011–4023

    PubMed  CAS  Google Scholar 

  • Olson KR, Healy MJ, Qin Z, Skovgaard N, Vulesevic B, Duff DW, Whitfield NL, Yang G, Wang R, Perry SF (2008) Hydrogen sulfide as an oxygen sensor in trout gill chemoreceptors. Am J Physiol Regul Integr Comp Physiol 295(2):R669–R680

    PubMed  CAS  Google Scholar 

  • Ortega Saenz P, Pardal R, Garcia Fernandez M, Lopez Barneo J (2003) Rotenone selectively occludes sensitivity to hypoxia in rat carotid body glomus cells. J Physiol 548(Pt 3):789–800

    PubMed  CAS  PubMed Central  Google Scholar 

  • Ortega-Saenz P, Pascual A, Gomez-Diaz R, Lopez-Barneo J (2006) Acute oxygen sensing in heme oxygenase-2 null mice. J Gen Physiol 128(4):405–411

    PubMed  CAS  PubMed Central  Google Scholar 

  • Ortega-Saenz P, Levitsky KL, Marcos-Almaraz MT, Bonilla-Henao V, Pascual A, Lopez-Barneo J (2010) Carotid body chemosensory responses in mice deficient of TASK channels. J Gen Physiol 135(4):379–392

    PubMed  CAS  PubMed Central  Google Scholar 

  • Pardal R, Ludewig U, Garcia Hirschfeld J, Lopez Barneo J (2000) Secretory responses of intact glomus cells in thin slices of rat carotid body to hypoxia and tetraethylammonium. Proc Natl Acad Sci U S A 97(5):2361–2366

    PubMed  CAS  PubMed Central  Google Scholar 

  • Park YB, Herrington J, Babcock DF, Hille B (1996) Ca2+ clearance mechanisms in isolated rat adrenal chromaffin cells. J Physiol 492(Pt 2):329–346

    PubMed  CAS  PubMed Central  Google Scholar 

  • Peers C (1990a) Effect of lowered extracellular pH on Ca2(+)-dependent K+ currents in type I cells from the neonatal rat carotid body. J Physiol 422:381–395

    PubMed  CAS  PubMed Central  Google Scholar 

  • Peers C (1990b) Hypoxic suppression of K+ currents in type I carotid body cells: selective effect on the Ca2(+)-activated K+ current. Neurosci Lett 119(2):253–256

    PubMed  CAS  Google Scholar 

  • Peers C, O’Donnell J (1990) Potassium currents recorded in type I carotid body cells from the neonatal rat and their modulation by chemoexcitatory agents. Brain Res 522(2):259–266

    PubMed  CAS  Google Scholar 

  • Peng YJ, Nanduri J, Raghuraman G, Souvannakitti D, Gadalla MM, Kumar GK, Snyder SH, Prabhakar NR (2010) H2S mediates O2 sensing in the carotid body. Proc Natl Acad Sci U S A 107(23):10719–10724

    PubMed  CAS  PubMed Central  Google Scholar 

  • Perez Garcia MT, Almaraz L, Gonzalez C (1991) Cyclic AMP modulates differentially the release of dopamine induced by hypoxia and other stimuli and increases dopamine synthesis in the rabbit carotid body. J Neurochem 57(6):1992–2000

    PubMed  CAS  Google Scholar 

  • Perez Garcia MT, Obeso A, Lopez Lopez JR, Herreros B, Gonzalez C (1992) Characterization of cultured chemoreceptor cells dissociated from adult rabbit carotid body. Am J Physiol 263(6 Pt 1):C1152–C1159

    PubMed  CAS  Google Scholar 

  • Prasad M, Fearon IM, Zhang M, Laing M, Vollmer C, Nurse CA (2001) Expression of P2X2 and P2X3 receptor subunits in rat carotid body afferent neurones: role in chemosensory signalling. J Physiol 537(Pt 3):667–677

    PubMed  CAS  PubMed Central  Google Scholar 

  • Rocher A, Geijo Barrientos E, Caceres AI, Rigual R, Gonzalez C, Almaraz L (2005) Role of voltage-dependent calcium channels in stimulus-secretion coupling in rabbit carotid body chemoreceptor cells. J Physiol 562(Pt 2):407–420

    PubMed  CAS  PubMed Central  Google Scholar 

  • Rong W, Gourine AV, Cockayne DA, Xiang Z, Ford AP, Spyer KM, Burnstock G (2003) Pivotal role of nucleotide P2X2 receptor subunit of the ATP-gated ion channel mediating ventilatory responses to hypoxia. J Neurosci 23(36):11315–11321

    PubMed  CAS  Google Scholar 

  • Shen TCR, Hauss WH (1939) Influence of dinitrophenol, dinitroortocresol and paranitrophenol upon the carotid sinus chemoreceptors of the dog. Arch Int Pharmacodyn Ther 63:251–258

    Google Scholar 

  • Stea A, Nurse CA (1989) Chloride channels in cultured glomus cells of the rat carotid body. Am J Physiol 257(2 Pt 1):C174–C181

    PubMed  CAS  Google Scholar 

  • Stea A, Nurse CA (1991) Whole-cell and perforated-patch recordings from O2-sensitive rat carotid body cells grown in short- and long-term culture. Pflugers Arch 418(1–2):93–101

    PubMed  CAS  Google Scholar 

  • Turner PJ, Buckler KJ (2013) Oxygen and mitochondrial inhibitors modulate both monomeric and heteromeric TASK-1 and TASK-3 channels in mouse carotid body type-1 cells. J Physiol 591(Pt 23):5977–5998

    PubMed  CAS  PubMed Central  Google Scholar 

  • Urena J, Lopez Lopez J, Gonzalez C, Lopez Barneo J (1989) Ionic currents in dispersed chemoreceptor cells of the mammalian carotid body. J Gen Physiol 93(5):979–999

    PubMed  CAS  Google Scholar 

  • Verkhovsky MI, Morgan JE, Puustein A, Wikstrom M (1996) Kinetic trapping of oxygen in cell respiration. Nature 380(6571):268–270

    PubMed  CAS  Google Scholar 

  • Waterland RA, Basu A, Chance B, Poyton RO (1991) The isoforms of yeast cytochrome c oxidase subunit V alter the in vivo kinetic properties of the holoenzyme. J Biol Chem 266(7):4180–4186

    PubMed  CAS  Google Scholar 

  • Weir EK, Lopez-Barneo J, Buckler KJ, Archer SL (2005) Acute oxygen-sensing mechanisms. N Engl J Med 353(19):2042–2055

    PubMed  CAS  PubMed Central  Google Scholar 

  • Werth JL, Thayer SA (1994) Mitochondria buffer physiological calcium loads in cultured rat dorsal root ganglion neurons. J Neurosci 14(1):348–356

    PubMed  CAS  Google Scholar 

  • Wilson DF, Mokashi A, Chugh D, Vinogradov S, Osanai S, Lahiri S (1994) The primary oxygen sensor of the cat carotid body is cytochrome a3 of the mitochondrial respiratory chain. FEBS Lett 351(3):370–374

    PubMed  CAS  Google Scholar 

  • Wyatt CN, Buckler KJ (2003) Effect of mitochondrial inhibitors on type I cells. Adv Exp Med Biol 536:55–58

    PubMed  CAS  Google Scholar 

  • Wyatt CN, Buckler KJ (2004) The effect of mitochondrial inhibitors on membrane currents in isolated neonatal rat carotid body type I cells. J Physiol 556(Pt 1):175–191

    PubMed  CAS  PubMed Central  Google Scholar 

  • Wyatt CN, Mustard KJ, Pearson SA, Dallas ML, Atkinson L, Kumar P, Peers C, Hardie DG, Evans AM (2007) AMP-activated protein kinase mediates carotid body excitation by hypoxia. J Biol Chem 282(11):8092–8098

    PubMed  CAS  PubMed Central  Google Scholar 

  • Zhang M, Zhong H, Vollmer C, Nurse CA (2000) Co-release of ATP and ACh mediates hypoxic signalling at rat carotid body chemoreceptors. J Physiol 525(Pt 1):143–158

    PubMed  CAS  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keith J. Buckler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Buckler, K.J., Turner, P.J. (2015). Functional Properties of Mitochondria in the Type-1 Cell and Their Role in Oxygen Sensing. In: Peers, C., Kumar, P., Wyatt, C., Gauda, E., Nurse, C., Prabhakar, N. (eds) Arterial Chemoreceptors in Physiology and Pathophysiology. Advances in Experimental Medicine and Biology, vol 860. Springer, Cham. https://doi.org/10.1007/978-3-319-18440-1_9

Download citation

Publish with us

Policies and ethics