Skip to main content

Epigenetic Regulation of Carotid Body Oxygen Sensing: Clinical Implications

  • Chapter
Arterial Chemoreceptors in Physiology and Pathophysiology

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 860))

Abstract

Recurrent apnea with intermittent hypoxia (IH) is a major clinical problem in infants born preterm. Recent epidemiological studies showed that adults who were born preterm exhibit increased incidence of sleep-disordered breathing and hypertension. Thus, apnea of prematurity predisposes individuals to autonomic dysfunction in adulthood. Experimental studies showed that adult rats exposed to IH as neonates exhibit augmented carotid body and adrenal chromaffin cells (AMC) response to hypoxia and irregular breathing with apneas and hypertension. The enhanced hypoxic sensitivity of the carotid body and AMC in adult rats exposed to neonatal IH was associated with increased oxidative stress, decreased expression of genes encoding anti-oxidant enzymes, and increased expression of pro-oxidant enzymes. Epigenetic mechanisms including DNA methylation leads to long-term changes in gene expression. The decreased expression of the Sod2 gene, which encodes the anti-oxidant enzyme, superoxide dismutase 2, was associated with DNA hypermethylation of a single CpG dinucleotide close to the transcription start site. Treating neonatal rats with decitabine, an inhibitor of DNA methylation, during IH exposure prevented the oxidative stress, enhanced hypoxic sensitivity, and autonomic dysfunction in adult rats. These findings suggest that epigenetic mechanisms, especially DNA methylation contributes to neonatal programming of hypoxic sensitivity and the ensuing autonomic dysfunction in adulthood.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Barker DJ, Osmond C, Simmonds SJ, Wield GA (1993) The relation of small head circumference and thinness at birth to death from cardiovascular disease in adult life. BMJ 306(6875):422–426

    PubMed  CAS  PubMed Central  Google Scholar 

  • Bedard K, Krause KH (2007) The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev 87(1):245–313

    PubMed  CAS  Google Scholar 

  • Bird AP, Wolffe AP (1999) Methylation-induced repression–belts, braces, and chromatin. Cell 99(5):451–454

    PubMed  CAS  Google Scholar 

  • Chi P, Allis CD, Wang GG (2010) Covalent histone modifications–miswritten, misinterpreted and mis-erased in human cancers. Nat Rev Cancer 10(7):457–469

    PubMed  CAS  PubMed Central  Google Scholar 

  • Christou K, Moulas AN, Pastaka C, Gourgoulianis KI (2003) Antioxidant capacity in obstructive sleep apnea patients. Sleep Med 4(3):225–228

    PubMed  Google Scholar 

  • Dalziel SR, Parag V, Rodgers A, Harding JE (2007) Cardiovascular risk factors at age 30 following pre-term birth. Int J Epidemiol 36(4):907–915

    PubMed  Google Scholar 

  • Feinberg AP (2007) Phenotypic plasticity and the epigenetics of human disease. Nature 447(7143):433–440

    PubMed  CAS  Google Scholar 

  • Gardiner-Garden M, Frommer M (1987) CpG islands in vertebrate genomes. J Mol Biol 196(2):261–282

    PubMed  CAS  Google Scholar 

  • Grebe M, Eisele HJ, Weissmann N, Schaefer C, Tillmanns H, Seeger W, Schulz R (2006) Antioxidant vitamin C improves endothelial function in obstructive sleep apnea. Am J Respir Crit Care Med 173(8):897–901

    PubMed  CAS  Google Scholar 

  • Hervouet E, Vallette FM, Cartron PF (2009) Dnmt3/transcription factor interactions as crucial players in targeted DNA methylation. Epigenetics 4(7):487–499

    PubMed  CAS  Google Scholar 

  • Hiroshi O, Nobuko O, Kunio Y (1979) Assay for lipid peroxidases in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358

    Google Scholar 

  • Illingworth RS, Bird AP (2009) CpG islands–‘a rough guide’. FEBS Lett 583(11):1713–1720

    PubMed  CAS  Google Scholar 

  • Julien C, Bairam A, Joseph V (2008) Chronic intermittent hypoxia reduces ventilatory long-term facilitation and enhances apnea frequency in newborn rats. Am J Physiol Regul Integr Comp Physiol 294(4):R1356–R1366

    PubMed  CAS  Google Scholar 

  • Kheirandish-Gozal L, Khalyfa A, Gozal D, Bhattacharjee R, Wang Y (2013) Endothelial dysfunction in children with obstructive sleep apnea is associated with epigenetic changes in the eNOS gene. Chest 143(4):971–977

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kim J, Bhattacharjee R, Khalyfa A, Kheirandish-Gozal L, Capdevila OS, Wang Y, Gozal D (2012) DNA methylation in inflammatory genes among children with obstructive sleep apnea. Am J Respir Crit Care Med 185(3):330–338

    PubMed  CAS  PubMed Central  Google Scholar 

  • Krieg AJ, Rankin EB, Chan D, Razorenova O, Fernandez S, Giaccia AJ (2010) Regulation of the histone demethylase JMJD1A by hypoxia-inducible factor 1 alpha enhances hypoxic gene expression and tumor growth. Mol Cell Biol 30(1):344–353

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kumar P, Prabhakar NR (2012) Peripheral chemoreceptors: function and plasticity of the carotid body. Compr Physiol 2:141–219

    PubMed  PubMed Central  Google Scholar 

  • Lagercrantz H, Bistoletti P (1977) Catecholamine release in the newborn infant at birth. Pediatr Res 11(8):889–893

    PubMed  CAS  Google Scholar 

  • Lagercrantz H, Sjöquist B (1980) Deficient sympatho-adrenal activity-a cause of apnoea? Urinary excretion of catecholamines and their metabolites in preterm infants. Early Hum Dev 4(4):405–409

    PubMed  CAS  Google Scholar 

  • Lagercrantz H, Edwards D, Henderson-Smart D, Hertzberg T, Jeffery H (1990) Autonomic reflexes in preterm infants. Acta Paediatr Scand 79(8–9):721–728

    PubMed  CAS  Google Scholar 

  • Miranda TB, Jones PA (2007) DNA methylation: the nuts and bolts of repression. J Cell Physiol 213(2):384–390

    PubMed  CAS  Google Scholar 

  • Nanduri J, Makarenko V, Reddy VD, Yuan G, Pawar A, Wang N, Khan SA, Zhang X, Kinsman B, Peng YJ, Kumar GK, Fox AP, Godley LA, Semenza GL, Prabhakar NR (2012) Epigenetic regulation of hypoxic sensing disrupts cardiorespiratory homeostasis. Proc Natl Acad Sci U S A 109(7):2515–2520

    PubMed  CAS  PubMed Central  Google Scholar 

  • Niculescu MD, Craciunescu CN, Zeisel SH (2005) Gene expression profiling of choline-deprived neural precursor cells isolated from mouse brain. Brain Res Mol Brain Res 134(2):309–322

    PubMed  CAS  Google Scholar 

  • Nock ML, Difiore JM, Arko MK, Martin RJ (2004) Relationship of the ventilatory response to hypoxia with neonatal apnea in preterm infants. J Pediatr 144(3):291–295

    PubMed  Google Scholar 

  • Paavonen EJ, Strang-Karlsson S, Räikkönen K, Heinonen K, Pesonen AK, Hovi P, Andersson S, Järvenpää AL, Eriksson JG, Kajantie E (2007) Very low birth weight increases risk for sleep-disordered breathing in young adulthood: the Helsinki Study of Very Low Birth Weight Adults. Pediatrics 120(4):778–784

    PubMed  Google Scholar 

  • Pawar A, Peng YJ, Jacono FJ, Prabhakar NR (2008) Comparative analysis of neonatal and adult rat carotid body responses to chronic intermittent hypoxia. J Appl Physiol 104(5):1287–1294

    PubMed  PubMed Central  Google Scholar 

  • Pawar A, Nanduri J, Yuan G, Khan SA, Wang N, Kumar GK, Prabhakar NR (2009) Reactive oxygen species-dependent endothelin signaling is required for augmented hypoxic sensory response of the neonatal carotid body by intermittent hypoxia. Am J Physiol Regul Integr Comp Physiol 296(3):R735–R742

    PubMed  CAS  PubMed Central  Google Scholar 

  • Peng YJ, Overholt JL, Kline D, Kumar GK, Prabhakar NR (2003) Induction of sensory long-term facilitation in the carotid body by intermittent hypoxia: implications for recurrent apneas. Proc Natl Acad Sci U S A 100(17):10073–10078

    PubMed  CAS  PubMed Central  Google Scholar 

  • Peng YJ, Rennison J, Prabhakar NR (2004) Intermittent hypoxia augments carotid body and ventilatory response to hypoxia in neonatal rat pups. J Appl Physiol 97(5):2020–2025

    PubMed  Google Scholar 

  • Peng YJ, Nanduri J, Yuan G, Wang N, Deneris E, Pendyala S, Natarajan V, Kumar GK, Prabhakar NR (2009) NADPH oxidase is required for the sensory plasticity of the carotid body by chronic intermittent hypoxia. J Neurosci 29(15):4903–4910

    PubMed  CAS  PubMed Central  Google Scholar 

  • Poets CF, Samuels MP, Southall DP (1994) Epidemiology and pathophysiology of apnoea of prematurity. Biol Neonate 65(3–4):211–219

    PubMed  CAS  Google Scholar 

  • Pollard PJ, Loenarz C, Mole DR, McDonough MA, Gleadle JM, Schofield CJ, Ratcliffe PJ (2008) Regulation of Jumonji-domain-containing histone demethylases by hypoxia-inducible factor (HIF)-1alpha. Biochem J 416(3):387–394

    PubMed  CAS  Google Scholar 

  • Prabhakar NR (2011) Sensory plasticity of the carotid body: role of reactive oxygen species and physiological significance. Respir Physiol Neurobiol 178(3):375–380

    PubMed  CAS  PubMed Central  Google Scholar 

  • Prabhakar NR, Kumar GK, Nanduri J, Semenza GL (2007) ROS signaling in systemic and cellular responses to chronic intermittent hypoxia. Antioxid Redox Signal 9(9):1397–1403

    PubMed  CAS  Google Scholar 

  • Ravelli AC, van der Meulen JH, Michels RP, Osmond C, Barker DJ, Hales CN, Bleker OP (1998) Glucose tolerance in adults after prenatal exposure to famine. Lancet 351(9097):173–177

    PubMed  CAS  Google Scholar 

  • Rosen CL, Larkin EK, Kirchner HL, Emancipator JL, Bivins SF, Surovec SA, Martin RJ, Redline S (2003) Prevalence and risk factors for sleep-disordered breathing in 8- to 11-year-old children: association with race and prematurity. J Pediatr 142(4):383–389

    PubMed  Google Scholar 

  • Seidler FJ, Slotkin TA (1985) Adrenomedullary function in the neonatal rat: responses to acute hypoxia. J Physiol 358:1–16

    PubMed  CAS  PubMed Central  Google Scholar 

  • Siddiqi S, Mills J, Matushansky I (2010) Epigenetic remodeling of chromatin architecture: exploring tumor differentiation therapies in mesenchymal stem cells and sarcomas. Curr Stem Cell Res Ther 5(1):63–73

    PubMed  CAS  PubMed Central  Google Scholar 

  • Souvannakitti D, Kumar GK, Fox A, Prabhakar NR (2009a) Contrasting effects of intermittent and continuous hypoxia on low O(2) evoked catecholamine secretion from neonatal rat chromaffin cells. Adv Exp Med Biol 648:345–349

    PubMed  Google Scholar 

  • Souvannakitti D, Kumar GK, Fox A, Prabhakar NR (2009b) Neonatal intermittent hypoxia leads to long-lasting facilitation of acute hypoxia-evoked catecholamine secretion from rat chromaffin cells. J Neurophysiol 101(6):2837–2846

    PubMed  CAS  PubMed Central  Google Scholar 

  • Souvannakitti D, Nanduri J, Yuan G, Kumar GK, Fox AP, Prabhakar NR (2010) NADPH oxidase-dependent regulation of T-type Ca2+ channels and ryanodine receptors mediate the augmented exocytosis of catecholamines from intermittent hypoxia-treated neonatal rat chromaffin cells. J Neurosci 30(32):10763–10772

    PubMed  CAS  Google Scholar 

  • Suzuki YJ, Jain V, Park AM, Day RM (2006) Oxidative stress and oxidant signaling in obstructive sleep apnea and associated cardiovascular diseases. Free Radic Biol Med 40(10):1683–1692

    PubMed  CAS  PubMed Central  Google Scholar 

  • Takeuchi Y, Mochizuki-Oda N, Yamada H, Kurokawa K, Watanabe Y (2001) Nonneurogenic hypoxia sensitivity in rat adrenal slices. Biochem Biophys Res Commun 289(1):51–56

    PubMed  CAS  Google Scholar 

  • Thompson RJ, Jackson A, Nurse CA (1997) Developmental loss of hypoxic chemosensitivity in rat adrenomedullary chromaffin cells. J Physiol 498(Pt 2):503–510

    PubMed  CAS  PubMed Central  Google Scholar 

  • Waterland RA, Jirtle RL (2003) Transposable elements: targets for early nutritional effects on epigenetic gene regulation. Mol Cell Biol 23(15):5293–5300

    PubMed  CAS  PubMed Central  Google Scholar 

  • Xia X, Lemieux ME, Li W, Carroll JS, Brown M, Liu XS, Kung AL (2009) Integrative analysis of HIF binding and transactivation reveals its role in maintaining histone methylation homeostasis. Proc Natl Acad Sci U S A 106(11):4260–4265

    PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgement

This research was supported by grants from National Institutes of Health, Heart, Lung and Blood Institute PO1-HL-90554 and UH2- HL-123610.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nanduri R. Prabhakar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Nanduri, J., Prabhakar, N.R. (2015). Epigenetic Regulation of Carotid Body Oxygen Sensing: Clinical Implications. In: Peers, C., Kumar, P., Wyatt, C., Gauda, E., Nurse, C., Prabhakar, N. (eds) Arterial Chemoreceptors in Physiology and Pathophysiology. Advances in Experimental Medicine and Biology, vol 860. Springer, Cham. https://doi.org/10.1007/978-3-319-18440-1_1

Download citation

Publish with us

Policies and ethics