Skip to main content

Age-Related Glucose Metabolism Changes in Brain

  • Chapter
  • First Online:
Computational Methods for Molecular Imaging

Part of the book series: Lecture Notes in Computational Vision and Biomechanics ((LNCVB,volume 22))

  • 823 Accesses

Abstract

Normal aging is associated with a progressive decline in cognitive performance, including perception, attention, language and memory. Cerebral glucose metabolism is a reliable index of neural activity and may provide evidence for brain function in healthy adults. To explore the metabolic topography of brain with normal aging, we studied the correlation between cerebral glucose metabolism and age under the resting-state in male and female groups respectively with position emission tomography (PET). In addition, many studies about brain network have suggested that normal aging is associated with alterations in coordinated patterns of the large-scale brain functional and structural systems. However, age-related changes in functional networks constructed via PET data are still barely understood. Here, large-scale functional networks in younger and older age groups were constructed by computing the partial correlation matrices of the regional mean intensity values from PET data to investigate the brain functional topological properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chiappe, P., Siegel, L., Hasher, L.: Working memory, inhibition and reading skill. In: Shohov, S. (ed.) Advances in Psychology Research, pp. 30–51. Nova Science Publishers Inc., New York (2002)

    Google Scholar 

  2. Gur, R.C., Mozley, L.H., Mozley, P.D., Resnick, S.M., Karp, J.S., Alavi, A., Arnold, S.E., Gur., R.E.: Sex-differences in regional cerebral glucose-metabolism during a resting state. Science 267, 528–531 (1995)

    Article  Google Scholar 

  3. Madden, D.J., Turkington, T.G., Provenzale, J.M., Denny, L.L., Hawk, T.C., Gottlob, L.R., Coleman, R.E.: Adult age differences in the functional neuroanatomy of verbal recognition memory. Hum. Brain Mapp. 7, 115–135 (1999)

    Article  Google Scholar 

  4. Mattay, V.S., Fera, F., Tessitore, A., Hariri, A.R., Das, S., Callicott, J.H., Weinberger, D.R.: Neurophysiological correlates of age-related changes in human motor function. Neurology 58, 630–635 (2002)

    Article  Google Scholar 

  5. Miller, E., Li, L., Desimone, R.: Activity of neurons in anterior inferior temporal cortex during a short-term memory task. J. Neurosci. 13, 1460–1478 (1993)

    Google Scholar 

  6. Pardo, J., Lee, J., Sheikh, S., Surerus-Johnson, C., Shah, H., Munch, K., Carlis, J., Lewis, S., Kuskowski, M., Dyskenb, M.: Where the brain grows old: decline in anterior cingulate and medial prefrontal function with normal aging. NeuroImage 35, 1231–1237 (2007)

    Article  Google Scholar 

  7. Parkin, A.J., Walter, B.M.: Recollective experience, normal aging, and frontal dysfunction. Psychol. Aging 7, 290–298 (1992)

    Article  Google Scholar 

  8. van Veen, V., Krug, M.K., Schooler, J.W., Carter, C.S.: Neural activity predicts attitude change in cognitive dissonance. Nat. Neurosci. 12, 1469–1474 (2009)

    Article  Google Scholar 

  9. Geinisman, Y., Detoledo-Morrell, L., Morrell, F., Heller, R.E.: Hippocampal markers of age-related memory dysfunction: behavioral, electrophysiological and morphological perspective. Prog. Neurobiol. 45, 223–252 (1995)

    Article  Google Scholar 

  10. Petit-Taboué, M.C., Landeau, B., Desson, J.F., Desgranges, B., Baron, J.C.: Effects of healthy aging on the regional cerebral metabolic rate of glucose assessed with statistical parametric mapping. NeuroImage 7, 176–184 (1998)

    Article  Google Scholar 

  11. Phelps, M.E., Huang, S.C., Hoffman, E.J., Selin, C., Sokoloff, L., Kuhl, D.E.: Tomographic measurement of local cerebral glucose metabolic rate in humans with (F-\(18\)) \(2\)-fluoro-\(2\)-deoxy-D-glucose: validation of method. Ann. Neurol. 6, 371–388 (1979)

    Article  Google Scholar 

  12. Herholz, K., Salmon, E., Perani, D., Baron, J.-C., Holthoff, V., Frölich, L., Schönknecht, P., Ito, K., Mielke, R., Kalbe, E., Zündorf, G., Delbeuck, X., Pelati, O., Anchisi, D., Fazio, F., Kerrouche, N., Desgranges, B., Eustache, F., Beuthien-Baumann, B., Menzel, C., Schröder, J., Kato, T., Arahata, Y., Henze, M., Heiss, W-D.: NeuroImage 17, 302–316 (2002)

    Google Scholar 

  13. Kalpouzos, G., Chételat, G., Baron, J., Landeau, B., Mevel, K., Godeaub, C., Barré, L., Constans, J., Viader, F., Eustache, F., Desgranges, B.: Voxel-based mapping of brain gray matter volume and glucose metabolism profiles in normal aging. Neurobiol. Aging 5, 1–13 (2007)

    Google Scholar 

  14. Moeller, J.R., Ishikawa, T., Dhawan, V., Spetsieris, P., Mandel, F., Alexander, G.E., Grady, C., Pietrini, P., Eidelberg, D.: The metabolic topography of normal aging. J. Cereb. Blood Flow Metab. 16, 385–398 (1996)

    Article  Google Scholar 

  15. Willis, M.W., Ketter, T.A., Kimbrell, T.A., George, M.S., Herscovitch, P., Danielson, A.L., Benson, B.E., Post, R.M.: Age, sex and laterality effects on cerebral glucose metabolism in healthy adults. Psychiatry Res. 114, 23–37 (2002)

    Article  Google Scholar 

  16. Ernst, M., Zametkin, A.J., Phillips, R.L., Cohen, R.M.: Age-related changes in brain glucose metabolism ia adults with attention-deficit/hyperactivity disorder and control subjects. J. Neuropsychiatry Clin. Neurosci. 10, 168–177 (1998)

    Article  Google Scholar 

  17. Murphy, D.G.M., DeCarli, C., McIntosh, A.R., Daly, E., Mentis, M.J., Pietrini, P., Szczepanik, J., Schapiro, M.B., Grady, C.L., Horwitz, B., Rapoport, S.I.: Sex differences in human brain morphometry and metabolism: an in vivo quantitative magnetic resonance imaging and positron emission tomography study on the effect of aging. Arch. Gen. Psychiatry 53, 585–594 (1996)

    Article  Google Scholar 

  18. de Leon, M.J., George, A.E., Tomanelli, J., Christman, D., Kluger, A., Miller, J., Ferris, S.H., Fowler, J., Brodie, J.D., van Gelder, P., Klinger, A., Wolf, A.P.: Positron emission tomography studies of normalaging: a replication of PET III and \(18\)-FDG using PET VI and \(11\)-CDG. Neurobiol. Aging 8, 319–323 (1987)

    Article  Google Scholar 

  19. Kushner, M., Tobin, M., Alavi, A., Chawluk, J., Rosen, M., Fazekas, F., Alavi, J., Reivich, M.: Cerebellar glucose consumption in normal and pathologic states using fluorine-FDG and PET. J. Nucl. Med. 28, 1667–1670 (1987)

    Google Scholar 

  20. Schlageter, N.L., Horwitz, B., Creasey, H., Carson, R., Duara, R., Berg, G.W., Rapoport, S.I.: Relation of measured brain glucose utilisation and cerebral atrophy in man. J. Neurol. Neurosurg. Psychiatry 50, 779–785 (1987)

    Article  Google Scholar 

  21. Yoshii, F., Barker, W.W., Chang, J.Y., Loewenstein, D., Apicella, A., Smith, D., Boothe, T., Ginsberg, M.D., Pascal, S., Duara, R.: Sensitivity of cerebral glucose metabolism to age, gender, brain volume, brain atrophy, and cerebrovascular risk factors. J. Cereb. Blood Flow Metab. 8, 654–661 (1988)

    Article  Google Scholar 

  22. Salmon, E., Maquet, P., Sadzot, B., Degueldre, C., Lemaire, C., Franck, G.: Decrease of frontal metabolism demonstrated by positron emission tomography in a population of healthy elderly volunteers. Acta Neurol. Belg. 91, 288–295 (1991)

    Google Scholar 

  23. Wang, G.J., Volkow, N.D., Wolf, A.P., Brodie, J.D., Hitzemann, R.J.: Intersubject variability of brain glucose metabolic measurements in young normal males. J. Nucl. Med. 35, 1457–1466 (1994)

    Google Scholar 

  24. Raz, N., Torres, I.J., Acker, J.D.: Age, gender, and hemispheric-differences in human striatum—a quantitative review and new data from in-vivo MRI morphometry. Neurobiol. Learn. Mem. 63, 133–142 (1995)

    Article  Google Scholar 

  25. Kumar, A., Braun, A., Schapiro, M., Grady, C., Carson, R., Herscovitch, P.: Cerebral glucose metabolic rates after 30 and 45 minute acquisitions: a comparative study. J. Nucl. Med. 33, 2103–2105 (1992)

    Google Scholar 

  26. Brooks, R.A.: Alternative formula for glucose utilization using labeled deoxyglucose. J. Nucl. Med. 23, 538–539 (1982)

    Google Scholar 

  27. Ibanez, V., Pietrini, P., Furey, M.L., Alexander, G.E., Millet, P., Bokde, A.L., Teichberg, D., Schapiro, M.B., Horwitz, B., Rapoport, S.I.: Resting state brain glucose metabolism is not reduced in normotensive healthy men during aging, after correction for brain atrophy. Brain Res. Bull. 63, 147–154 (2004)

    Article  Google Scholar 

  28. Yanase, D., Matsunari, I., Yajima, K., Chen, W., Fujikawa, A., Nishimura, S., Matsuda, H., Yamada, M.: Brain FDG PET study of normal aging in Japanese: effect of atrophy correction. Eur. J. Nucl. Med. Mol. Imaging 32, 794–805 (2005)

    Article  Google Scholar 

  29. Sowell, E.R., Peterson, B.S., Thompson, P.M., Welcome, S.E., Henkenius, A.L., Toga, A.W.: Mapping cortical change across the human life span. Nat. Neurosci. 6, 309–315 (2003)

    Article  Google Scholar 

  30. Salat, D.H., Buckner, R.L., Snyder, A.Z., Greve, D.N., Desikan, R.S., Busa, E., Morris, J.C., Dale, A.M., Fischl, B.: Thinning of the cerebral cortex in aging. Cereb. Cortex 14, 721–730 (2004)

    Article  Google Scholar 

  31. Hazlett, E.A., Buchsbaum, M.S., Mohs, R.C., Spiegel-Cohen, J., Wei, T.C., Azueta, R., Haznedar, M.M., Singer, M.B., Shihabuddin, L., Luu-Hsia, C., Harvey, P.D.: Age-related shift in brain region activity during successful memory performance. Neurobiol. Aging 19, 437–445 (1998)

    Article  Google Scholar 

  32. Posner, M.I., Rothbart, M.K.: Attention, self-regulation and consciousness. Philos. Trans. R. Soc. Lond. B Biol. Sci. 353, 1915–1927 (1998)

    Article  Google Scholar 

  33. Gur, R.C., Gunning-Dixon, F.M., Turetsky, B.I., Bilker, W.B., Gur, R.E.: Brain region and sex differences in age association with brain volume—a quantitative MRI study of healthy young adults. Am. J. Geriatr. Psychiatry 10, 72–80 (2002)

    Article  Google Scholar 

  34. Cabeza, R.: Hemispheric asymmetry reduction in older adults: the HAROLD model. Psychol. Aging. 17, 85–100 (2002)

    Article  Google Scholar 

  35. Cabeza, R., Anderson, N.D., Locantore, J.K., McIntosh, A.R.: Aging gracefully: compensatory brain activity in high-performing older adults. NeuroImage 17, 1394–1402 (2002)

    Article  Google Scholar 

  36. Grady, C.L., Bernstein, L.J., Beig, S., Siegenthaler, A.L.: The effects of encoding strategy on age-related changes in the functional neuroanatomy of face memory. Psychol. Aging 17, 7–23 (2002)

    Article  Google Scholar 

  37. Reuter-Lorenz, P.A., Jonides, J., Smith, E.S., Hartley, A., Miller, A., Marshuetz, C., Koeppe, R.A.: Age differences in the frontal lateralization of verbal and spatial working memory revealed by PET. J. Cogn. Neurosci. 12, 174–187 (2000)

    Article  Google Scholar 

  38. Kawachi, T., Ishii, K., Sakamoto, S., Matsu, M., Mori, T., Sasaki, M.: Gender differences in cerebral glucose metabolism: a PET study. J. Neurol. Sci. 199, 79–83 (2002)

    Article  Google Scholar 

  39. Scarmeas, N., Zarahn, E., Anderson, K.E., Hilton, J., Flynn, J., Van Heertum, R.L., Sackeim, H.A., Stern, Y.: Cognitive reserve modulates functional brain responses during memory tasks: a PET study in healthy young and elderly subjects. NeuroImage 19, 1215–1227 (2003)

    Article  Google Scholar 

  40. Rasgon, N.L., Small, G.W., Siddarth, P., Miller, K., Ercoli, L.M., Bookheimer, S.Y., Lavretsky, H., Huang, S.C., Barrio, J.R., Phelps, M.E.: Estrogen use and brain metabolic change in older adults. Psychiatry Res. 107, 11–18 (2001)

    Article  Google Scholar 

  41. Chiappe, P., Siegel, L.S., Hasher, L.: Working memory, inhibitory control, and reading disability. Mem Cogn. 28, 8–17 (2000)

    Article  Google Scholar 

  42. Aine, C.J., Sanfratello, L., Adair, J.C., Knoefel, J.E., Caprihan, A., Stephen, J.M.: Development and decline of memory functions in normal, pathological and healthy successful aging. Brain Topogr. 24, 323–339 (2011)

    Article  Google Scholar 

  43. McKhann, G., Drachman, D., Folstein, M., Katzman, R., Price, D., Stadlan, E.M.: Clinical diagnosis of Alzheimer’s disease report of the nincdsadrda work group under the auspices of department of health and human services task force on Alzheimer’s disease. Neurology 34, 939–939 (1984)

    Article  Google Scholar 

  44. Hughes, A.J., Daniel, S.E., Kilford, L., Lees, A.J.: Accuracy of clinical diagnosis of idiopathic parkinson’s disease: a clinico-pathological study of \(100\) cases. J. Neurol. 55, 181–184 (1992)

    Google Scholar 

  45. Bullmore, E., Sporns, O.: Complex brain networks: graph theoretical analysis of structural and functional systems. Nat. Rev. Neurosci. 10, 186–198 (2009)

    Article  Google Scholar 

  46. Bassett, D.S., Bullmore, E.T.: Human brain networks in health and disease. Curr. Opin. Neurol. 22, 340–347 (2009)

    Article  Google Scholar 

  47. Meunier, D., Achard, S., Morcom, A., Bullmore, E.: Age-related changes in modular organization of human brain functional networks. Neuroimage 44, 715–723 (2009)

    Article  Google Scholar 

  48. Micheloyannis, S., Vourkas, M., Tsirka, V., Karakonstantaki, E., Kanatsouli, K., Stam, C.J.: The influence of ageing on complex brain networks: a graph theoretical analysis. Hum. Brain Mapp. 30, 200–208 (2009)

    Article  Google Scholar 

  49. Sun, J., Tong, S., Yang, G.Y.: Reorganization of brain networks in aging and age-related diseases. Aging Dis. 3, 181–193 (2012)

    Google Scholar 

  50. Watts, D., Strogatz, S.: Collective dynamics of small-world networks. Nature 393, 440–442 (1998)

    Article  Google Scholar 

  51. Latora, V., Marchiori, M.: Efficient behavior of small-world networks. Phys. Rev. Lett. 87, 198701-1–198701-4 (2001)

    Article  Google Scholar 

  52. Supekar, K., Musen, M., Menon, V.: Development of large-scale functional brain networks in children. PLoS Biol. 7, e1000157 (2009)

    Article  Google Scholar 

  53. Fair, D.A., Cohen, A.L., Power, J.D., Dosenbach, N.U., Church, J.A., Miezin, F.M., Schlaggar, B.L., Petersen, S.E.: Functional brain networks develop from a local to distributed organization. PLoS Comput. Biol. 5, e1000381 (2009)

    Article  MathSciNet  Google Scholar 

  54. Wu, K., Taki, Y., Sato, K., Kinomura, S., Goto, R., Okada, K., Kawashima, R., He, Y., Evans, A.C., Fukuda, H.: Agerelated changes in topological organization of structural brain networks in healthy individuals. Hum. Brain Mapp. 33, 552–568 (2012)

    Article  Google Scholar 

  55. Achard, S., Bullmore, E.: Efficiency and cost of economical brain functional networks. PLoS Comput. Biol. 3, e17 (2007)

    Article  Google Scholar 

  56. Stam, C., Jones, B., Nolte, G., Breakspear, M., Scheltens, P.: Small-world networks and functional connectivity in Alzheimer’s disease. Cereb. Cortex 17, 92–99 (2007)

    Article  Google Scholar 

  57. He, Y., Chen, Z., Evans, A., Breakspear, M., Scheltens, P.: Structural insights into aberrant topological patterns of large-scale cortical networks in Alzheimer’s disease. J. Neurosci. 28, 4756–4766 (2008)

    Article  Google Scholar 

  58. Koch, W., Teipel, S., Mueller, S., Buerger, K., Bokde, A.L., Hampel, H., Coates, U., Reiser, M., Meindl, T.: Effects of aging on default mode network activity in resting state fMRI: does the method of analysis matter? Neuroimage 51, 280–287 (2010)

    Article  Google Scholar 

  59. Damoiseaux, J.S., Beckmann, C.F., Arigita, E.J., Barkhof, F., Scheltens, P., Stam, C.J., Smith, S.M., Rombouts, S.A.: Reduced resting-state brain activity in the default network in normal aging. Cereb. Cortex 18, 1856–1864 (2008)

    Article  Google Scholar 

  60. Fair, D.A., Cohen, A.L., Dosenbach, N.U., Church, J.A., Miezin, F.M., Barch, D.M., Raichle, M.E., Petersen, S.E., Schlaggar, B.L.: The maturing architecture of the brains default network. Proc. Natl. Acad. Sci. USA 105, 4028–4032 (2008)

    Article  Google Scholar 

  61. Bluhm, R.L., Osuch, E.A., Lanius, R.A., Boksman, K., Neufeld, R.W., Théberge, J., Williamson, P.: Default mode network connectivity: effects of age, sex, and analytic approach. Neuroreport 19, 887–891 (2008)

    Article  Google Scholar 

  62. Binder, J.R., Frost, J.A., Hammeke, T.A., Bellgowan, P.S., Rao, S.M., Cox, R.W.: Default mode network connectivity: effects of age, sex, and analytic approach. J. Cogn. Neurosci. 11, 80–93 (1999)

    Article  Google Scholar 

  63. Shulman, G.L., Corbetta, M., Buckner, R.L., Raichle, M.E., Fiez, J.A., Miezin, F.M., Petersen, S.E.: Top-down modulation of early sensory cortex. Cereb. Cortex 7, 193–206 (1997)

    Article  Google Scholar 

  64. Genovese, C., Lazar, N., Nichols, T.: Thresholding of statistical maps in functional neuroimaging using the false discovery rate. Neuroimage 48, 870–878 (2002)

    Article  Google Scholar 

  65. Horwitz, B., Tagamets, M., McIntosh, A.R.: Neural modeling, functional brain imaging, and cognition. Trends Cogn. Sci. 3, 91–98 (1999)

    Article  Google Scholar 

  66. Ferrarelli, F., Haraldsson, H.M., Barnhart, T.E., Roberts, A.D., Oakes, T.R., Massimini, M., Stone, C.K., Kalin, N.H., Tononi, G.: A [\(^{17}\)F]-fluoromethane PET/TMS study of effective connectivity. Brain Res. Bull. 64, 10–113 (2004)

    Article  Google Scholar 

  67. Seo, E.H., Lee, D.Y., Lee, J.M., Park, J.S., Sohn, B.K., Lee, D.S., Choe, Y.M., Woo, J.I.: Whole-brain functional networks in cognitively normal. PLOS One 8, e53922 (2013)

    Article  Google Scholar 

  68. Gavrilescu, M., Shaw, M.E., Stuart, G.W., Eckersley, P., Svalbe, I.D., Egan, G.F.: Simulation of the effects of global normalization procedures in functional MRI. Neuroimage 17, 532–542 (2002)

    Article  Google Scholar 

  69. Dukart, J., Mueller, K., Horstmann, A., Vogt, B., Frisch, S., Barthel, H., Becker, G., Möller, H.E., Villringer, A., Sabri, O., Schroeter, M.L.: Differential effects of global and cerebellar normalization on detection and differentiation of dementia in FDG-PET studies. Neuroimage 49, 1490–1495 (2010)

    Article  Google Scholar 

  70. Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O., Delcroix, N., Mazoyer, B., Joliot, M.: Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 15, 273–289 (2002)

    Article  Google Scholar 

  71. Worsley, K., Chen, J., Lerch, J., Evans, A.: Comparing functional connectivity via thresholding correlations and singular value decomposition. Philos. Trans. R. Soc. Lond. B Biol. Sci. 360, 913–920 (2005)

    Article  Google Scholar 

  72. Lerch, J.P., Worsley, K., Shaw, W.P., Greenstein, D.K., Lenroot, R.K., Giedd, J., Evans, A.C.: Mapping anatomical correlations across cerebral cortex (MACACC) using cortical thickness from MRI. Neuroimage 31, 993–1003 (2006)

    Article  Google Scholar 

  73. Liu, Y., Liang, M., Zhou, Y., He, Y., Hao, Y., Song, M., Yu, C., Liu, H., Liu, Z., Jiang, T.: Disrupted small-world networks in schizophrenia. Brain 131, 945–961 (2008)

    Article  Google Scholar 

  74. Humphries, M., Gurney, K., Prescott, T.: The brainstem reticular formation is a small-world, not scale-free, network. Proc. Biol. Sci. 273, 503–511 (2006)

    Article  Google Scholar 

  75. Achard, S., Salvador, R., Whitcher, B., Suckling, J., Bullmore, E.: A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs. J. Neurosci. 26, 63–72 (2006)

    Article  Google Scholar 

  76. Sporns, O., Chialvo, D.R., Kaiser, M., Hilgetag, C.C.: Organization, development and function of complex brain networks. Trends Cogn. Sci. 8, 418–425 (2004)

    Article  Google Scholar 

  77. Maslov, S., Sneppen, K.: Specificity and stability in topology of protein networks. Science 296, 910–913 (2002)

    Article  Google Scholar 

  78. Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D., Alon, U.: Network motifs: simple building blocks of complex networks. Science 298, 824–827 (2002)

    Article  Google Scholar 

  79. Freeman, L.: A set of measures of centrality based on betweenness. Sociometry 44, 35–41 (1977)

    Article  Google Scholar 

  80. Albert, R., Jeong, H., Barabási, A.L.: Error and attack tolerance of complex networks. Nature 406, 378–382 (2000)

    Article  Google Scholar 

  81. Kaiser, M., Hilgetag, C.: Edge vulnerability in neural and metabolic networks. Biol. Cybern. 90, 311–317 (2004)

    Article  MATH  Google Scholar 

  82. Cohen, J., Cohen, P., West, S.G., Aiken, L.S.: Applied Multiple Regression/Correlation Analysis for the Behavioral Sciences, 3rd edn. Routledge, New York (2013)

    Google Scholar 

  83. Bassett, D., Bullmore, E.: Small-world brain networks. Neuroscientist 12, 512–523 (2006)

    Article  Google Scholar 

  84. Sporns, O., Tononi, G., Edelman, G.: Theoretical neuroanatomy: relating anatomical and functional connectivity in graphs and cortical connection matrices. Cereb. Cortex. 10, 127–141 (2000)

    Article  Google Scholar 

  85. Kaiser, M., Hilgetag, C.: Nonoptimal component placement, but short processing paths, due to long-distance projections in neural systems. PLoS Comput. Biol. 2, e95 (2006)

    Article  Google Scholar 

  86. Bassett, D.S., Bullmore, E., Verchinski, B.A., Mattay, V.S., Weinberger, D.R., Meyer-Lindenberg, A.: Hierarchical organization of human cortical networks in health and schizophrenia. J. Neurosci. 28, 9239–9248 (2008)

    Article  Google Scholar 

  87. Wang, L., Zhu, C., He, Y., Zang, Y., Cao, Q., Zhang, H., Zhong, Q., Wang, Y.: Altered small-world brain functional networks in children with attentiondeficit-hyperactivity disorder. Hum. Brain Mapp. 30, 638–649 (2009)

    Article  Google Scholar 

  88. Chen, Z.J., He, Y., Rosa-Neto, P., Germann, J., Evans, A.C.: Revealing modular architecture of human brain structural networks by using cortical thickness from MRI. Cereb. Cortex 18, 2374–2381 (2008)

    Article  Google Scholar 

  89. Strogatz, S.H.: Exploring complex networks. Nature 410, 268–276 (2001)

    Article  Google Scholar 

  90. Catani, M., Ffytche, D.H.: The rises and falls of disconnection syndromes. Brain 128, 2224–2239 (2005)

    Article  Google Scholar 

  91. Honey, C.J., Kötter, R., Breakspear, M., Sporns, O.: Network structure of cerebral cortex shapes functional connectivity on multiple time scales. Proc. Natl. Acad. Sci. USA 104, 10240–10245 (2007)

    Article  Google Scholar 

  92. Wang, X.F., Chen, G.: Complex networks: small-world, scale-free and beyond. IEEE Circuits Syst. Mag. 3, 6–20 (2003)

    Article  Google Scholar 

  93. Mesulam, M.M.: From sensation to cognition. Brain 121, 1013–1052 (1998)

    Article  Google Scholar 

  94. He, Y., Dagher, A., Chen, Z., Charil, A., Zijdenbos, A., Worsley, K., Evans, A.: Impaired smallworld efficiency in structural cortical networks in multiple sclerosis associated with white matter lesion load. Brain 132, 3366–3379 (2009)

    Article  Google Scholar 

  95. Iturria-Medina, Y., Sotero, R.C., Canales-Rodríguez, E.J., Alemán-Gómez, Y., Melie-García, L.: Studying the human brain anatomical network via diffusion-weighted MRI and graph theory. Neuroimage 40, 1064–1076 (2008)

    Article  Google Scholar 

  96. Albert, M.L.: In: Knoefel, J. (ed.) Clinical Neurology Of Aging. Oxford University Press, New York (2010)

    Google Scholar 

  97. Gong, G., Rosa-Neto, P., Carbonell, F., Chen, Z.J., He, Y., Evans, A.C.: Age- and gender-related differences in the cortical anatomical network. J. Neurosci. 29, 15684–15693 (2009)

    Article  Google Scholar 

  98. Reijneveld, J.C., Ponten, S.C., Berendse, H.W., Stam, C.J.: The application of graph theoretical analysis to complex networks in the brain. Clin. Neurophysiol. 118, 2317–2331 (2007)

    Article  Google Scholar 

  99. Jhoo, J.H., Lee, D.Y., Choo, I.H., Seo, E.H., Oh, J.S., Lee, J.S., Lee, D.S., Kim, S.G., Youn, J.C., Kim, K.W., Woo, J.I.: Discrimination of normal aging, MCI and AD with multimodal imaging measures on the medial temporal lobe. Psychiatry Res. 183, 237–243 (2010)

    Article  Google Scholar 

  100. Raichle, M.E., MacLeod, A.M., Snyder, A.Z., Powers, W.J., Gusnard, D.A., Shulman, G.L.: A default mode of brain function. Proc. Natl. Acad. Sci. USA 98, 676–682 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoyan Shen .

Editor information

Editors and Affiliations

Appendix

Appendix

See Table 8

Table 8 Regions of interest included in AAL-atlas

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Shen, X., Liu, Z., Hu, Z., Liu, H. (2015). Age-Related Glucose Metabolism Changes in Brain. In: Gao, F., Shi, K., Li, S. (eds) Computational Methods for Molecular Imaging. Lecture Notes in Computational Vision and Biomechanics, vol 22. Springer, Cham. https://doi.org/10.1007/978-3-319-18431-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18431-9_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18430-2

  • Online ISBN: 978-3-319-18431-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics