Regression Rule Learning for Methane Forecasting in Coal Mines

  • Michał Kozielski
  • Adam Skowron
  • Łukasz Wróbel
  • Marek Sikora
Part of the Communications in Computer and Information Science book series (CCIS, volume 521)


The rule-based approach to methane concentration prediction is presented in this paper. The applied solution is based on the modification called fixed of the separate-and-conquer rule induction approach. We also proposed the modification of a rule quality evaluation based on confidence intervals calculated for positive and negative examples covered by the rule. The characteristic feature of the considered methane forecasting model is that it omits the readings of the sensor being the subject of forecasting. The approach is evaluated on a real life data set acquired during a week in a coal mine. The results show the advantages of the introduced method (in terms of both the prediction accuracy and knowledge extraction) in comparison to the standard approaches typically implemented in the analytical tools.


Prediction Rule-based regression Statistical rule quality evaluation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Amin, T., Chikalov, I., Moshkov, M., Zielosko, B.: Classifiers based on optimal decision rules. Fundam. Inform. 127(1-4), 151–160 (2013)zbMATHMathSciNetGoogle Scholar
  2. 2.
    Gold, R.: Tests auxiliary to χ2 tests in a Markov chain. Annals of Mathematical Statistics, 56–74 (1963)Google Scholar
  3. 3.
    Holmes, G., Hall, M., Prank, E.: Generating rule sets from model trees. Springer (1999)Google Scholar
  4. 4.
    Hothorn, T., Hornik, K., Zeileis, A.: Unbiased recursive partitioning: A conditional inference framework. Journal of Computational and Graphical Statistics 15(3), 651–674 (2006)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Janssen, F., Fürnkranz, J.: Heuristic rule-based regression via dynamic reduction to classification. In: IJCAI Proceedings-International Joint Conference on Artificial Intelligence, vol. 22, p. 1330 (2011)Google Scholar
  6. 6.
    Quinlan, J.R., et al.: Learning with continuous classes. In: Proceedings of the 5th Australian Joint Conference on Artificial Intelligence, Singapore, vol. 92, pp. 343–348 (1992)Google Scholar
  7. 7.
    R Core Team: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria (2014)Google Scholar
  8. 8.
    Sikora, M., Sikora, B.: Improving prediction models applied in systems monitoring natural hazards and machinery. International Journal of Applied Mathematics and Computer Science 22(2), 477–491 (2012)CrossRefzbMATHGoogle Scholar
  9. 9.
    Sikora, M., Sikora, B.: Rough natural hazards monitoring. In: Rough Sets: Selected Methods and Applications in Management and Engineering, pp. 163–179. Springer (2012)Google Scholar
  10. 10.
    Sikora, M., Skowron, A., Wróbel, Ł.: Rule quality measure-based induction of unordered sets of regression rules. In: Ramsay, A., Agre, G. (eds.) AIMSA 2012. LNCS, vol. 7557, pp. 162–171. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  11. 11.
    Strobl, C., Boulesteix, A.L., Zeileis, A., Hothorn, T.: Bias in random forest variable importance measures: Illustrations, sources and a solution. BMC Bioinformatics 8(25) (2007)Google Scholar
  12. 12.
    Wieczorek, A., Słowiński, R.: Generating a set of association and decision rules with statistically representative support and anti-support. Information Sciences 277, 56–70 (2014)CrossRefGoogle Scholar
  13. 13.
    Witten, I.H., Frank, E., Hall, M.A.: Data Mining: Practical Machine Learning Tools and Techniques, 3rd edn. Morgan Kaufmann, Amsterdam (2011)Google Scholar
  14. 14.
    Wróbel, Ł., Sikora, M., Skowron, A.: Algorithms for filtration of unordered sets of regression rules. In: Sombattheera, C., Loi, N.K., Wankar, R., Quan, T. (eds.) MIWAI 2012. LNCS, vol. 7694, pp. 284–295. Springer, Heidelberg (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Michał Kozielski
    • 1
  • Adam Skowron
    • 2
  • Łukasz Wróbel
    • 3
  • Marek Sikora
    • 2
  1. 1.Institute of ElectronicsSilesian University of TechnologyGliwicePoland
  2. 2.Institute of InformaticsSilesian University of TechnologyGliwicePoland
  3. 3.Institute of Innovative TechnologiesEMAGKatowicePoland

Personalised recommendations