Advertisement

Real-Time People Counting from Depth Images

  • Jakub NalepaEmail author
  • Janusz Szymanek
  • Michal Kawulok
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 521)

Abstract

In this paper, we propose a real-time algorithm for counting people from depth image sequences acquired using the Kinect sensor. Counting people in public vehicles became a vital research topic. Information on the passenger flow plays a pivotal role in transportation databases. It helps the transport operators to optimize their operational costs, providing that the data are acquired automatically and with sufficient accuracy. We show that our algorithm is accurate and fast as it allows 16 frames per second to be processed. Thus, it can be used either in real-time to process traffic information on the fly, or in the batch mode for analyzing very large databases of previously acquired image data.

Keywords

People counting Object detection Object tracking Depth image 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Albiol, A., Mora, I., Naranjo, V.: Real-time high density people counter using morphological tools. IEEE Transactions on Intelligent Transportation Systems 2(4), 204–218 (2001)CrossRefGoogle Scholar
  2. 2.
    Bernini, N., Bombini, L., Buzzoni, M., Cerri, P., Grisleri, P.: An embedded system for counting passengers in public transportation vehicles. In: Proc. IEEE ASME, pp. 1–6 (2014)Google Scholar
  3. 3.
    Chan, A.B., Liang, Z.S.J., Vasconcelos, N.: Privacy preserving crowd monitoring: Counting people without people models or tracking. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2008, pp. 1–7 (June 2008)Google Scholar
  4. 4.
    Chan, A.B., Vasconcelos, N.: Modeling, clustering, and segmenting video with mixtures of dynamic textures. IEEE TPAMI 30(5), 909–926 (2008)CrossRefGoogle Scholar
  5. 5.
    Conte, D., Foggia, P., Percannella, G., Tufano, F., Vento, M.: A method for counting moving people in video surveillance videos. EURASIP Journal on Advances in Signal Processing 2010(1), 231–240 (2010), http://asp.eurasipjournals.com/content/2010/1/231240 Google Scholar
  6. 6.
    Ferryman, J., Ellis, A.L.: Performance evaluation of crowd image analysis using the PETS2009 dataset. Patt. Recogn. Lett. 44(0), 3–15 (2014), http://www.sciencedirect.com/science/article/pii/S0167865514000191 CrossRefGoogle Scholar
  7. 7.
    Ge, W., Collins, R.T.: Crowd detection with a multiview sampler. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part V. LNCS, vol. 6315, pp. 324–337. Springer, Heidelberg (2010), http://dl.acm.org/citation.cfm?id=1888150.1888177 CrossRefGoogle Scholar
  8. 8.
    Gudyś, A., Rosner, J., Segen, J., Wojciechowski, K., Kulbacki, M.: Tracking people in video sequences by clustering feature motion paths. In: Chmielewski, L.J., Kozera, R., Shin, B.-S., Wojciechowski, K. (eds.) ICCVG 2014. LNCS, vol. 8671, pp. 236–245. Springer, Heidelberg (2014), http://dx.doi.org/10.1007/978-3-319-11331-9_29 CrossRefGoogle Scholar
  9. 9.
    Hsieh, J.W., Peng, C.S., Fan, K.C.: Grid-based template matching for people counting. In: IEEE 9th Workshop on Multimedia Signal Processing, MMSP 2007, pp. 316–319 (October 2007)Google Scholar
  10. 10.
    Kawulok, M., Nalepa, J.: Support vector machines training data selection using a genetic algorithm. In: Gimel’farb, G., et al. (eds.) SSPR & SPR 2012. LNCS, vol. 7626, pp. 557–565. Springer, Heidelberg (2012)Google Scholar
  11. 11.
    Kawulok, M., Szymanek, J.: Precise multi-level face detector for advanced analysis of facial images. IET Image Processing 6(2), 95–103 (2012)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Kawulok, M., Wu, J., Hancock, E.R.: Supervised relevance maps for increasing the distinctiveness of facial images. Pattern Recognition 44(4), 929–939 (2011), http://www.sciencedirect.com/science/article/pii/S0031320310004942 CrossRefGoogle Scholar
  13. 13.
    Lagodzinski, P., Smolka, B.: Application of the extended distance transformation in digital image colorization. Multimedia Tools and App. 69(1), 111–137 (2014), http://dx.doi.org/10.1007/s11042-012-1246-2 CrossRefGoogle Scholar
  14. 14.
    Maddalena, L., Petrosino, A., Russo, F.: People counting by learning their appearance in a multi-view camera environment. Patt. Recogn. Lett. 36, 125–134 (2014), http://www.sciencedirect.com/science/article/pii/S0167865513003796 CrossRefGoogle Scholar
  15. 15.
    Nalepa, J., Blocho, M.: Co-operation in the parallel memetic algorithm. International Journal of Parallel Programming, 1–28 (2014), http://dx.doi.org/10.1007/s10766-014-0343-4
  16. 16.
    Nalepa, J., Kawulok, M.: Fast and accurate hand shape classification. In: Kozielski, S., Mrozek, D., Kasprowski, P., Małysiak-Mrozek, B. z. (eds.) BDAS 2014. CCIS, vol. 424, pp. 364–373. Springer, Heidelberg (2014), http://dx.doi.org/10.1007/978-3-319-06932-6_35 CrossRefGoogle Scholar
  17. 17.
    Schofield, A.J., Mehta, P.A., Stonham, T.J.: A system for counting people in video images using neural networks to identify the background scene. Pattern Recognition 29(8), 1421–1428 (1996), http://www.sciencedirect.com/science/article/pii/0031320395001638 CrossRefGoogle Scholar
  18. 18.
    Starosolski, R.: New simple and efficient color space transformations for lossless image compression. J. of Vis. Commun. and Image Represent 25(5), 1056–1063 (2014)CrossRefGoogle Scholar
  19. 19.
    Su, C.W., Liao, H.Y.M., Tyan, H.R.: A vision-based people counting approach based on the symmetry measure. In: IEEE International Symposium on Circuits and Systems, ISCAS 2009, pp. 2617–2620 (May 2009)Google Scholar
  20. 20.
    Viola, P., Jones, M.J., Snow, D.: Detecting pedestrians using patterns of motion and appearance. In: Proc IEEE Int. Conf. on Computer Vision, vol. 2, pp. 734–741 (2003)Google Scholar
  21. 21.
    Wu, B., Nevatia, R.: Detection and tracking of multiple, partially occluded humans by Bayesian combination of edgelet based part detectors. International Journal of Computer Vision 75(2), 247–266 (2007), http://dx.doi.org/10.1007/s11263-006-0027-7 CrossRefGoogle Scholar
  22. 22.
    Yahiaoui, T., Meurie, C., Khoudour, L., Cabestaing, F.: A people counting system based on dense and close stereovision. In: Elmoataz, A., Lezoray, O., Nouboud, F., Mammass, D. (eds.) ICISP 2008 2008. LNCS, vol. 5099, pp. 59–66. Springer, Heidelberg (2008), http://dx.doi.org/10.1007/978-3-540-69905-7_7 CrossRefGoogle Scholar
  23. 23.
    Zhao, T., Nevatia, R.: Bayesian human segmentation in crowded situations. In: Proceedings of the 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2, pp. II–459–II–466 (June 2003)Google Scholar
  24. 24.
    Zhao, X., Delleandrea, E., Chen, L.: A people counting system based on face detection and tracking in a video. In: Sixth IEEE International Conference on Advanced Video and Signal Based Surveillance, AVSS 2009, pp. 67–72 (September 2009)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Jakub Nalepa
    • 1
    • 2
    Email author
  • Janusz Szymanek
    • 1
  • Michal Kawulok
    • 1
    • 2
  1. 1.Future ProcessingGliwicePoland
  2. 2.Institute of InformaticsSilesian University of TechnologyGliwicePoland

Personalised recommendations