Determination of Reference Mechanical Angular Speed for Wind Power Systems

  • C. P. Chioncel
  • L. Bereteu
  • D. I. Petrescu
  • M. Babescu
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 357)


This paper analyzes the behavior of wind power systems at significantly variable wind speeds in time. That’s the reason why we have to determine the angular reference speed, so as to achieve a maximum capture of wind energy over a longer period of time. This paper determines the behavior of the system wind turbine (WT) synchronous generator (SG), considering the speed/mechanical angular velocity n ref/ω ref as reference in the control system. The control structure is based on the instantaneous wind speed measurement using an original model for the wind turbine. As the WT & SG system is nonlinear, the regulator tuning is done through numerical simulation.


Time variable wind speed Mathematical models for wind turbine and synchronous generator Estimation of reference speed Maximum energy Maximum power 


  1. 1.
    Babescu M, Borlea I, Jigoria Oprea D (2012) Fundamental aspects concerning Wind Power System Operation Part. 2, Case Study. Medina, Tunisia 2012 IEEE MELECON, 25–28 March, 978-1-4673-0783-3Google Scholar
  2. 2.
    Babescu M, Gana O, Clotea L (2012) Fundamental Problems related to the control of wind energy conversion systems-maximum power extraction and smoothing the power fluctuations delivers to the grid. In: OPTIM-13th international conference on optimization of electrical and electronic equipment, Optim, BrasovGoogle Scholar
  3. 3.
    Barakati SM, Kazerani M, Aplevich JD (2009) Maximum power tracking control for a wind turbine system including a matrix converter. IEEE Trans Energy Convers 24(3):705–713Google Scholar
  4. 4.
    Babescu M, Boraci R, Chioreanu C, Koch C, Gana O (2010) On functioning of the electric wind system at its maximum power. ICCC-CONTI 2010, Timisoara, Romania, 27–29 MayGoogle Scholar
  5. 5.
    Boldea I, Atanasiu V (1983) Analiza unitara a masinilor electrice. Ed. Academiei RSR, BucurestiGoogle Scholar
  6. 6.
    Babescu M, Borlea I, Jigoria Oprea D (2012) Fundamental aspects concerning Wind Power System Operation Part. 1, Mathematical Models. Medina, Tunisia 2012 IEEE MELECON, 25–28 March, 978-1-4673-0783-3Google Scholar
  7. 7.
    Nishikata S, Tatsuta F (2010) A New interconnecting method for wind turbine/generators in a wind farm and basic performances of the integrated system. IEEE Trans Ind Electron 57(2):468–476, ISSN 0278-0046Google Scholar
  8. 8.
    Chioncel CP, Babescu M, Chioncel P (2011) Optimization of the wind systems, based on the maximum wind energy. In: International proceedings of computer science and information technology, pp 190–194, ISSN 978-981-08-8906-7Google Scholar
  9. 9.
    Chioncel CP, Chioncel P, Gillich N (2008) Scalar control structure of an asynchronous motor at maximum torque. In: The 19th international DAAAM symposium intelligent manufacturing and automation, ISSN 1726-9679, ISBN 978-3901509-68-1Google Scholar
  10. 10.
    Petru T (2003) Modeling wind turbines for power system studies. Ph.D. dissertation, Chalmers, Goteborg, SwedenGoogle Scholar
  11. 11.
    El Aimani S, Francois B, Minne F, Robyns B (2003) Comparative analysis of control structures for variable speed wind turbine. In: Proceedings of CESA, Lille, France, 9–11 July 2003Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • C. P. Chioncel
    • 1
  • L. Bereteu
    • 2
  • D. I. Petrescu
    • 2
  • M. Babescu
    • 2
  1. 1.University ‘Eftimie Murgu’ of Town ResitaResitaRomania
  2. 2.University ‘Politehnica’ of TimisoaraTimisoaraRomania

Personalised recommendations