Skip to main content

Establishing PNN-Based Iris Code to Identity Fuzzy Membership for Consistent Enrollment

  • Conference paper
  • First Online:
Soft Computing Applications

Abstract

This paper presents the recognition performances of a simulated multi-enrollment iris biometric verification system in which the fuzzy membership of any current user to an enrolled identity that he is claiming is decided using a probabilistic neural network architecture that has two roles: first, it encodes from five binary iris code samples the digital identity of each enrolled person (eye), and second, it uses the enrolled digital identities to produce similarity scores as membership degrees of the current candidate iris codes to the claimed identities. The experimental part contains two simulations of a recognition system having 654 users, each of them enrolled with five eye images (and the corresponding binary iris codes). The first simulation uses five candidate iris codes for each enrolled user (which gives a total of 3.270 candidate iris codes), whereas the second one is testing the identity claims for all the candidate iris codes corresponding to the eyes having at least five candidate iris codes available (giving a total of 8.810 candidate iris codes). Both simulations use CASIA-Iris-Lamp (V4) database.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. CASIA Iris Image Database. http://biometrics.idealtest.org/

  2. Popescu-Bodorin N, Balas VE (2011) Learning iris biometric digital identities for secure authentication—a neural-evolutionary perspective pioneering intelligent iris identification. In: Fodor J et al. (eds) Recent advances in intelligent engineering systems, vol. 378, Series, Studies in Computational Intelligence. Springer, Berlin, pp 409–434. doi:10.1007/978-3-642-23229-9_19

    Google Scholar 

  3. Ayer AJ (1936) Language, truth, and logic. Victor Gollanez Ltd., London

    Google Scholar 

  4. Turing AM (1950) Computing machinery and intelligence. Mind 59:433–460

    Article  MathSciNet  Google Scholar 

  5. Daugman J (2004) How iris recognition works. IEEE Trans Circ Syst Video Tech 14(1):21–30. doi:10.1109/TCSVT.2003.818350

    Article  Google Scholar 

  6. Popescu-Bodorin N, Balas VE (2014) Fuzzy membership, possibility, probability and negation in biometrics. Acta Polytech Hung 11(50), No. 4/2014:79–100

    Google Scholar 

  7. Hollingsworth KP, Bowyer KW, Flynn PJ (2009) The best bits in an iris code. IEEE Trans Pattern Anal Mach Intell 31(6):964–973. doi:10.1109/TPAMI.2008.185

    Article  Google Scholar 

  8. Vatsa M, Singh R, Noore A, Singh SK (2009) Belief function theory based biometric match score fusion, case studies in multi-instance and multi-unit iris verification. In: Seventh international conference on advances in pattern recognition, ICAPR’09, IEEE, pp 433–436. doi:10.1109/ICAPR.2009.98

  9. Popescu-Bodorin N (2010) ‘Fragile Bits’ vs. multi-enrollment—a case study of iris recognition on Bath University iris database. ROMAI J 2/2009(5):127–144. ISSN: 1841-5512 (print)/2065-7714 (online)

    Google Scholar 

  10. Popescu-Bodorin N, Balas VE, Motoc IM (2011) 8-valent fuzzy logic for iris recognition and biometry. In: Proceedings of 5th IEEE international symposium on computational intelligence and intelligent informatics, IEEE Press, Floriana, Malta, 15–17 Sept, pp 149–154. doi:10.1109/ISCIII.2011.6069761

  11. Popescu-Bodorin N, Balas VE, Motoc IM (2013) The biometric menagerie—a fuzzy and inconsistent concept. In: Soft computing applications, Springer, Berlin, pp 27–43. doi:10.1007/978-3-642-33941-7_6

    Google Scholar 

  12. Popescu-Bodorin N, Balas VE (2010) Comparing Haar-Hilbert and Log-Gabor based iris encoders on bath iris image database. In: Proceedings of 4th international workshop on soft computing applications, IEEE Press, pp 191–196. doi:10.1109/SOFA.2010.5565599

  13. Popescu-Bodorin N (2009) Exploring new directions in iris recognition. In: 11th international symposium on symbolic and numeric algorithms for scientific computing, IEEE Computer Society Conference Publishing Services, pp 384–391. doi:10.1109/SYNASC.2009.45

  14. Radu P, Sirlantzis K, Howells G, Hoque S, Deravi F (2013) A multi-algorithmic colour iris recognition system In: Soft computing applications, Springer, Berlin, pp 45–56. doi:10.1109/IJCNN.2005.1556175

  15. Popescu-Bodorin N, Balas VE (2011) Exploratory simulation of an intelligent iris verifier distributed system. In: 6th IEEE international symposium on applied computational intelligence and informatics (SACI 2011), Timisora, Romania, 19–21 May. doi:10.1109/SACI.2011.5873010

  16. Elkan C (1997) Boosting and naive bayesian learning, Technical Report No. CS97-557, Department of Computer Science and Engineering, University of California, San Diego

    Google Scholar 

  17. Lu C, Shu Z, Mei X, Iris matching using ferns classifier. In: 2012 international conference on wavelet active media technology and information processing (ICWAMTIP), 17–19 Dec, pp 109–112. doi:10.1109/ICWAMTIP.2012.6413451

  18. Rosenblatt F (1958) The perceptron-a probabilistic model for information storage and organization in the brain. Psychol Rev 65(6):386–408

    Article  MathSciNet  Google Scholar 

  19. Kwang YS, Kang RP, Byung JK, Sung JP (2009) Super-resolution method based on multiple multi-layer perceptions for iris recognition. In: Proceedings of the 4th international conference on ubiquitous information technologies and applications, ICUT‘09, 20–22 Dec, pp 1–5. doi:10.1109/ICUT.2009.5405701

  20. Vapnik V, Kotz S (2006) Estimation of dependences based on empirical data. Springer

    Google Scholar 

  21. Reyes-Lopez J, Campos S, Allende H, Salas R (2011) Zernike’s feature descriptors for iris recognition with SVM. In: 30th international conference of the chilean computer science society (SCCC), pp 283–288. doi:10.1109/SCCC.2011.36

  22. Weston J, Watkins C (1999) Support vector machines for multi-class pattern recognition. ESANN 99:219–224

    Google Scholar 

  23. Roy K, Bhattacharya P, Debnath RC (2007) Multi-class SVM based iris recognition. In: 10th international conference on computer and information technology, ICCIT 2007, pp 1–6. doi:10.1109/ICCITECHN.2007.4579426

  24. Roy K, Bhattacharya P (2005) Iris recognition with support vector machines. In: Advances in biometrics, Springer, Berlin Heidelberg, pp 486–492. doi:10.1007/11608288_65

    Google Scholar 

  25. Ali MAM, Md Tahir N (2014) Half iris Gabor based iris recognition, In: 2014 IEEE 10th international colloquium on signal processing and its applications (CSPA), 7–9 March, pp 282–287. doi:10.1109/CSPA.2014.6805765

  26. Wang Y, Han J (2004) Iris recognition using support vector machines. In: Advances in neural networks–ISNN 2004, Springer, Heidelberg, pp. 622–628. doi:10.1007/978-3-540-28647-9_102

    Google Scholar 

  27. Jiang Z (2010) Support vector machines for multi-class pattern recognition based on improved voting strategy. In: 2010 Chinese control and decision conference (CCDC), IEEE, pp 517–520. doi:10.1109/CCDC.2010.5499000

  28. Masek L (2003) Recognition of human iris patterns for biometric identification. Bachelor thesis, The University of Western Australia

    Google Scholar 

  29. Popescu-Bodorin N, Balas VE, Motoc IM (2011) Iris codes classification using discriminant and witness directions. In: Proceedings of 5th IEEE international symposium on computational intelligence and intelligent informatics, IEEE Press, Floriana, Malta, Sept 15–17, pp 143–148. doi:10.1109/ISCIII.2011.6069760

  30. Araghi LF, Shahhosseini H, Setoudeh F (2010) Iris recognition using neural network. In: Proceedings of the international multiconference of engineers and computer scientists, vol. 1, pp 338–340

    Google Scholar 

  31. Simpson PK (1992) Fuzzy min-max neural networks-I-clssification. IEEE Trans Neural Netw 3(5):776–786. doi:10.1109/72.159066

    Article  Google Scholar 

  32. Chowhan SS, Shinde GN (2011) Iris recognition using fuzzy min-max neural network In: Int J Comput Electric Eng 3(5) doi:10.7763/IJCEE.2011.V3.414

  33. Liam LW, Chekima A, Fan LC, Dargham JA (2002) Iris recognition using self-organizing neural network. In: Student conference on research and development 2002, SCOReD 2002, IEEE, pp 169–172. doi:10.1109/SCORED.2002.1033084

  34. Hossain S, Sarma KK (2012) Iris recognition based identification using 2d-discrete cosine transform and self organizing map neural network. In: international conference on recent advance in engineering and technology, Hyderabad, India, pp 58–62

    Google Scholar 

  35. Te Chu C, Chen CH (2005) High performance iris recognition based on LDA and LPCC. In: 17th IEEE international conference on tools with artificial intelligence, ICTAI 05, IEEE, pp 421–425. doi:10.1109/ICTAI.2005.71

  36. Specht DF (1990) Probabilistic neural networks. Neural Netw 3(1):109–118

    Article  Google Scholar 

Download references

Acknowledgments

Portions of this research used computational cluster resources of Applied Computer Science Testing Laboratory (Bucharest, Romania), and the CASIA-IrisV4 image database collected by the Chinese Academy of Sciences’ Institute of Automation (CASIA).

This work was partially supported by the University of South-East Europe Lumina (Bucharest, Romania), Lumina Foundation (Bucharest, Romania), and Intelligent Systems Laboratory (Aurel Vlaicu University of Arad, Romania).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristina M. Noaica .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Balas, V.E., Noaica, C.M., Popa, J.R., Munteanu, C., Stroescu, V.C. (2016). Establishing PNN-Based Iris Code to Identity Fuzzy Membership for Consistent Enrollment. In: Balas, V., Jain, L., Kovačević, B. (eds) Soft Computing Applications. Advances in Intelligent Systems and Computing, vol 357. Springer, Cham. https://doi.org/10.1007/978-3-319-18416-6_63

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18416-6_63

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18415-9

  • Online ISBN: 978-3-319-18416-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics