Establishing PNN-Based Iris Code to Identity Fuzzy Membership for Consistent Enrollment

Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 357)


This paper presents the recognition performances of a simulated multi-enrollment iris biometric verification system in which the fuzzy membership of any current user to an enrolled identity that he is claiming is decided using a probabilistic neural network architecture that has two roles: first, it encodes from five binary iris code samples the digital identity of each enrolled person (eye), and second, it uses the enrolled digital identities to produce similarity scores as membership degrees of the current candidate iris codes to the claimed identities. The experimental part contains two simulations of a recognition system having 654 users, each of them enrolled with five eye images (and the corresponding binary iris codes). The first simulation uses five candidate iris codes for each enrolled user (which gives a total of 3.270 candidate iris codes), whereas the second one is testing the identity claims for all the candidate iris codes corresponding to the eyes having at least five candidate iris codes available (giving a total of 8.810 candidate iris codes). Both simulations use CASIA-Iris-Lamp (V4) database.


Iris recognition Probabilistic neural network Multi-enrollment 



Portions of this research used computational cluster resources of Applied Computer Science Testing Laboratory (Bucharest, Romania), and the CASIA-IrisV4 image database collected by the Chinese Academy of Sciences’ Institute of Automation (CASIA).

This work was partially supported by the University of South-East Europe Lumina (Bucharest, Romania), Lumina Foundation (Bucharest, Romania), and Intelligent Systems Laboratory (Aurel Vlaicu University of Arad, Romania).


  1. 1.
    CASIA Iris Image Database.
  2. 2.
    Popescu-Bodorin N, Balas VE (2011) Learning iris biometric digital identities for secure authentication—a neural-evolutionary perspective pioneering intelligent iris identification. In: Fodor J et al. (eds) Recent advances in intelligent engineering systems, vol. 378, Series, Studies in Computational Intelligence. Springer, Berlin, pp 409–434. doi: 10.1007/978-3-642-23229-9_19 Google Scholar
  3. 3.
    Ayer AJ (1936) Language, truth, and logic. Victor Gollanez Ltd., LondonGoogle Scholar
  4. 4.
    Turing AM (1950) Computing machinery and intelligence. Mind 59:433–460MathSciNetCrossRefGoogle Scholar
  5. 5.
    Daugman J (2004) How iris recognition works. IEEE Trans Circ Syst Video Tech 14(1):21–30. doi: 10.1109/TCSVT.2003.818350 CrossRefGoogle Scholar
  6. 6.
    Popescu-Bodorin N, Balas VE (2014) Fuzzy membership, possibility, probability and negation in biometrics. Acta Polytech Hung 11(50), No. 4/2014:79–100Google Scholar
  7. 7.
    Hollingsworth KP, Bowyer KW, Flynn PJ (2009) The best bits in an iris code. IEEE Trans Pattern Anal Mach Intell 31(6):964–973. doi: 10.1109/TPAMI.2008.185 CrossRefGoogle Scholar
  8. 8.
    Vatsa M, Singh R, Noore A, Singh SK (2009) Belief function theory based biometric match score fusion, case studies in multi-instance and multi-unit iris verification. In: Seventh international conference on advances in pattern recognition, ICAPR’09, IEEE, pp 433–436. doi: 10.1109/ICAPR.2009.98
  9. 9.
    Popescu-Bodorin N (2010) ‘Fragile Bits’ vs. multi-enrollment—a case study of iris recognition on Bath University iris database. ROMAI J 2/2009(5):127–144. ISSN: 1841-5512 (print)/2065-7714 (online)Google Scholar
  10. 10.
    Popescu-Bodorin N, Balas VE, Motoc IM (2011) 8-valent fuzzy logic for iris recognition and biometry. In: Proceedings of 5th IEEE international symposium on computational intelligence and intelligent informatics, IEEE Press, Floriana, Malta, 15–17 Sept, pp 149–154. doi: 10.1109/ISCIII.2011.6069761
  11. 11.
    Popescu-Bodorin N, Balas VE, Motoc IM (2013) The biometric menagerie—a fuzzy and inconsistent concept. In: Soft computing applications, Springer, Berlin, pp 27–43. doi: 10.1007/978-3-642-33941-7_6 Google Scholar
  12. 12.
    Popescu-Bodorin N, Balas VE (2010) Comparing Haar-Hilbert and Log-Gabor based iris encoders on bath iris image database. In: Proceedings of 4th international workshop on soft computing applications, IEEE Press, pp 191–196. doi: 10.1109/SOFA.2010.5565599
  13. 13.
    Popescu-Bodorin N (2009) Exploring new directions in iris recognition. In: 11th international symposium on symbolic and numeric algorithms for scientific computing, IEEE Computer Society Conference Publishing Services, pp 384–391. doi: 10.1109/SYNASC.2009.45
  14. 14.
    Radu P, Sirlantzis K, Howells G, Hoque S, Deravi F (2013) A multi-algorithmic colour iris recognition system In: Soft computing applications, Springer, Berlin, pp 45–56. doi: 10.1109/IJCNN.2005.1556175
  15. 15.
    Popescu-Bodorin N, Balas VE (2011) Exploratory simulation of an intelligent iris verifier distributed system. In: 6th IEEE international symposium on applied computational intelligence and informatics (SACI 2011), Timisora, Romania, 19–21 May. doi: 10.1109/SACI.2011.5873010
  16. 16.
    Elkan C (1997) Boosting and naive bayesian learning, Technical Report No. CS97-557, Department of Computer Science and Engineering, University of California, San DiegoGoogle Scholar
  17. 17.
    Lu C, Shu Z, Mei X, Iris matching using ferns classifier. In: 2012 international conference on wavelet active media technology and information processing (ICWAMTIP), 17–19 Dec, pp 109–112. doi: 10.1109/ICWAMTIP.2012.6413451
  18. 18.
    Rosenblatt F (1958) The perceptron-a probabilistic model for information storage and organization in the brain. Psychol Rev 65(6):386–408MathSciNetCrossRefGoogle Scholar
  19. 19.
    Kwang YS, Kang RP, Byung JK, Sung JP (2009) Super-resolution method based on multiple multi-layer perceptions for iris recognition. In: Proceedings of the 4th international conference on ubiquitous information technologies and applications, ICUT‘09, 20–22 Dec, pp 1–5. doi: 10.1109/ICUT.2009.5405701
  20. 20.
    Vapnik V, Kotz S (2006) Estimation of dependences based on empirical data. SpringerGoogle Scholar
  21. 21.
    Reyes-Lopez J, Campos S, Allende H, Salas R (2011) Zernike’s feature descriptors for iris recognition with SVM. In: 30th international conference of the chilean computer science society (SCCC), pp 283–288. doi: 10.1109/SCCC.2011.36
  22. 22.
    Weston J, Watkins C (1999) Support vector machines for multi-class pattern recognition. ESANN 99:219–224Google Scholar
  23. 23.
    Roy K, Bhattacharya P, Debnath RC (2007) Multi-class SVM based iris recognition. In: 10th international conference on computer and information technology, ICCIT 2007, pp 1–6. doi: 10.1109/ICCITECHN.2007.4579426
  24. 24.
    Roy K, Bhattacharya P (2005) Iris recognition with support vector machines. In: Advances in biometrics, Springer, Berlin Heidelberg, pp 486–492. doi: 10.1007/11608288_65 Google Scholar
  25. 25.
    Ali MAM, Md Tahir N (2014) Half iris Gabor based iris recognition, In: 2014 IEEE 10th international colloquium on signal processing and its applications (CSPA), 7–9 March, pp 282–287. doi: 10.1109/CSPA.2014.6805765
  26. 26.
    Wang Y, Han J (2004) Iris recognition using support vector machines. In: Advances in neural networks–ISNN 2004, Springer, Heidelberg, pp. 622–628. doi: 10.1007/978-3-540-28647-9_102 Google Scholar
  27. 27.
    Jiang Z (2010) Support vector machines for multi-class pattern recognition based on improved voting strategy. In: 2010 Chinese control and decision conference (CCDC), IEEE, pp 517–520. doi: 10.1109/CCDC.2010.5499000
  28. 28.
    Masek L (2003) Recognition of human iris patterns for biometric identification. Bachelor thesis, The University of Western AustraliaGoogle Scholar
  29. 29.
    Popescu-Bodorin N, Balas VE, Motoc IM (2011) Iris codes classification using discriminant and witness directions. In: Proceedings of 5th IEEE international symposium on computational intelligence and intelligent informatics, IEEE Press, Floriana, Malta, Sept 15–17, pp 143–148. doi: 10.1109/ISCIII.2011.6069760
  30. 30.
    Araghi LF, Shahhosseini H, Setoudeh F (2010) Iris recognition using neural network. In: Proceedings of the international multiconference of engineers and computer scientists, vol. 1, pp 338–340Google Scholar
  31. 31.
    Simpson PK (1992) Fuzzy min-max neural networks-I-clssification. IEEE Trans Neural Netw 3(5):776–786. doi: 10.1109/72.159066 CrossRefGoogle Scholar
  32. 32.
    Chowhan SS, Shinde GN (2011) Iris recognition using fuzzy min-max neural network In: Int J Comput Electric Eng 3(5) doi: 10.7763/IJCEE.2011.V3.414
  33. 33.
    Liam LW, Chekima A, Fan LC, Dargham JA (2002) Iris recognition using self-organizing neural network. In: Student conference on research and development 2002, SCOReD 2002, IEEE, pp 169–172. doi: 10.1109/SCORED.2002.1033084
  34. 34.
    Hossain S, Sarma KK (2012) Iris recognition based identification using 2d-discrete cosine transform and self organizing map neural network. In: international conference on recent advance in engineering and technology, Hyderabad, India, pp 58–62Google Scholar
  35. 35.
    Te Chu C, Chen CH (2005) High performance iris recognition based on LDA and LPCC. In: 17th IEEE international conference on tools with artificial intelligence, ICTAI 05, IEEE, pp 421–425. doi: 10.1109/ICTAI.2005.71
  36. 36.
    Specht DF (1990) Probabilistic neural networks. Neural Netw 3(1):109–118CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.University ‘Aurel Vlaicu’ of AradAradRomania
  2. 2.University of S-E Europe LuminaBucharestRomania
  3. 3.Faculty of Maths and Computer ScienceUniversity of BucharestBucharestRomania

Personalised recommendations