Testing Biorthogonal Wavelets on Magnetocardiogram Processing Algorithms

Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 357)


The paper studies the influence of biorthogonal wavelets upon several steps of the processing of magnetocardiograms recorded in stress conditions: baseline drift correction, denoising, and compression. The implementation of a novel technique implies the performance of several tests in order to define the optimal parameters of the algorithms. Therefore, simulations have been performed using several biorthogonal families of mother wavelets. Analyzing the results, we notice that even a high baseline drift is properly corrected and that the denoising performances are better, compared to orthogonal wavelets. Also, there has been obtained a significant improvement of the compression ratio, enabling the development of a more competitive monitoring system.


Wavelet analysis Magnetocardiogram Biorthogonal wavelets 


  1. 1.
    Esperer HD (1997) Hat die Magnetokardiographie eine Klinische Zukunft? Herzschrittmachertherapie und Elektrophysiologie, Steinkopf Verlag, vol 8Google Scholar
  2. 2.
    Zhang Y, Wolters N, Lomparski D, Zander W, Banzet M, Krause H, van Leeuwen P (2003) Recording fetal and adult magnetocardiograms using high-temperature superconducting quantum interference device gradiometers. IEEE Trans Appl Supercond 13(4):3862–3866Google Scholar
  3. 3.
    Denis B (2005) Cardiologie, Presses Universitaires de Lyon, 2002Google Scholar
  4. 4.
    Chee J, Seow S-C (2010) Advances in cardiac signal processing—the electrocardiogram. Springer, BerlinGoogle Scholar
  5. 5.
    Stolz R, Zakosarenko V, Bondarenko N, Schulz M, Fritzsch L, Oukhanski N, Meyer H-G (2003) Integrated SQUID-gradiometer system for magneto-cardiography without magnetic shielding. IEEE Trans Appl Supercond 13(2):356–359Google Scholar
  6. 6.
    Arvinti B, Isar A, Stolz R, Costache M (2011) Performance of fourier versus wavelet analysis for magnetocardiograms using a squid—acquisition system. In: Proceedings of the 6th IEEE international symposium on applied computational intelligence and informatics,Timişoara, Romania, pp 69–74, May 2011Google Scholar
  7. 7.
    Arvinti B, Costache M, Stolz R (2012) Compression of magnetocardiograms using the discrete wavelet transform. In: 10th IEEE international symposium on electronics and telecommunications (ISETC), proceedings of the ISETC 2012, pp 247–250, 15–16 Nov 2012, Timisoara, Romania. ISBN 978-1-4673-1175-5Google Scholar
  8. 8.
    Mix Dwight F, Olejniczak Kraig J (2003) Elements of wavelets for engineers and scientists. Wiley, HobokenGoogle Scholar
  9. 9.
    Matlab documentation, 1994–2005. The MathWorks, IncGoogle Scholar
  10. 10.
    Sayadi O, Shamsollahi MB (2007) Multiadaptive bionic wavelet transform: application to ECG denoising and baseline wandering reduction. EURASIP J Adv Signal Process 2007:11, article ID 41274. doi: 10.1155/2007/41274
  11. 11.
    Sayadi O, Shamsollahi MB (2008) ECG denoising and compression using a modified extended Kalman filter structure. IEEE Trans Biomed Eng 55(9):2240–2248Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.University “Politehnica” of TimișoaraTimișoaraRomania
  2. 2.Researcher at the Institute for Photonic Technology IPHT JenaJenaGermany

Personalised recommendations