Skip to main content

Dasymetric Mapping of Population Distribution in Serbia Based on Soil Sealing Degrees Layer

  • Chapter
  • First Online:
Surface Models for Geosciences

Abstract

This paper outlines a methodology used to disaggregate a census population in order to more accurately determine the population distribution over a regional area or a state scale. Data regarding population distributions are usually accessible at the level of individual census designation places and are usually mapped as aggregated polygons by the choropleth method with the assumption of a homogeneous distribution of population within a cartographic unit. In contrast, dasymetric mapping provides a more reliable view into the allocation of inhabitants, which can be of significant importance when estimating population distributions. Coupling this methodology with the GIS environment and a free open access database of soil sealing facilitates the acquisition of population surface models for human and urban geography applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://www.eea.europa.eu/data-and-maps/figures/data/urban-morphological-zones-2000-umz2000-f1v0.

  2. 2.

    http://www.eea.europa.eu/data-and-maps/data/eea-fast-track-service-precursor-on-land-monitoring-degree-of-soil-sealing.

  3. 3.

    http://www.eea.europa.eu/data-and-maps/figures/soil-sealing-in-the-capitals/explanation-of-the-methodology/download.

References

  • Bajat B, Krunić N, Kilibarda M, Samardžić-Petrović M (2011a) Spatial prediction of human population change. In: CD proceedings of 14th AGILE international conference on geographic information science, Utrecht, Netherlands, 18–21 April 2011

    Google Scholar 

  • Bajat B, Krunić N, Kilibarda M, Samardžić-Petrović M (2011b) Spatial modelling of population concentration using geographically weighted regression method. Zbornik radova Geografskog Instituta ‘‘Jovan Cvijić’’, 61:151–167

    Google Scholar 

  • Bajat B, Krunić N, Kilibarda M (2011c) Dasymetric mapping of spatial distribution of population in Timok region. In: Proceedings of international scientific conference professional practice and education in geodesy and related fields, Kladovo, Serbia, pp 30–34, 24–26 Jun 2011

    Google Scholar 

  • Bajat B, Krunić N, Samardžić Petrović M, Kilibarda M (2013) Dasymetric modelling of population dynamics in urban areas. Geodetski Vestnik 57(4):777–792

    Article  Google Scholar 

  • Balk D, Yetman G (2004) The global distribution of population: evaluating the gains in resolution refinement, documentation for GPWv3. CIESIN, Columbia, Palisades, NY

    Google Scholar 

  • Bengtsson M, Shen Y, Oki T (2006) A SRES-based gridded global population dataset for 1990–2100. Popul Environ 28(2):113–131

    Article  Google Scholar 

  • Burghardt W (2006) Soil sealing and soil properties related to sealing. Geol Soc Lond Spec Publ 266:117–124

    Article  Google Scholar 

  • CIESIN, CIAT (2005). Gridded population of the world, VERSION 3 (GPWv3). In: Socioeconomic data and applications center (SEDAC), Columbia University, Palisades, NY. Available at http://sedac.ciesin.columbia.edu/gpw

  • Deichmann U, Balk D, Yetman G (2001) Transforming population data for interdisciplinary usages: from census to grid. Available at: http://sedac.ciesin.org/gpw-v2/GPWdocumentation.pdf

  • DeMers MN (1999) Fundamentals of geographic information systems, 2nd edn. John Wiley, New York

    Google Scholar 

  • Dobson JE, Bright EA, Coleman PR, Durfee R, Worley BA (2000) Landscan: a global population database for estimating populations at risk. Photogram Eng Rem S 66:849–857

    Google Scholar 

  • Eicher CL, Brewer CA (2001) Dasymetric mapping and areal interpolation: implementation and evaluation. Cartography Geogr Inf Sci 28:125–138

    Article  Google Scholar 

  • Gallego FJ (2010) A population density grid of the European Union. Popul Environ 31:460–473

    Article  Google Scholar 

  • Harvey F (2008) A primer of GIS: fundamental geographic and cartographic concepts. The Guilford Press, New York

    Google Scholar 

  • Kilibarda M, Bajat B (2012) PlotGoogleMaps: the R-based web-mapping tool for thematic spatial data. Geomatica 66:37–49

    Article  Google Scholar 

  • Krunić N, Bajat B, Kilibarda M, Tošić D (2011) Modelling the spatial distribution of vojvodina’s population by using dasymetric method. Spatium 24:45–50

    Article  Google Scholar 

  • Leyk S, Buttenfield BP, Ruther M (2014) Dasymetric refinement for improved temporal small area analysis. In: Extended abstract proceedings of the GIScience 2014, Vienna, Austria, pp 42–46, 23–26 Sept

    Google Scholar 

  • Maantay JA, Maroko AR, Herrmann C (2007) Mapping population distribution in the urban environment: the cadastral-based expert dasymetric system (CEDS). Cartogr Geogr Inf Sci 34(2):77–102

    Article  Google Scholar 

  • Mennis J (2003) Generating surface models of population using dasymetric mapping. Prof Geogr 55(1):31–42

    Google Scholar 

  • Mennis J (2009) Dasymetric mapping for estimating population in small areas. Geogr Compass 3(2):727–745

    Article  Google Scholar 

  • Nestorov I, Protić D (2009) CORINE land cover mapping in Serbia. Građevinska knjiga, Beograd

    Google Scholar 

  • ORNL (2003) Integrated analysis of mitigation and adaptation as responses to concerns about impacts of global climate change, ORNL Working paper, June 2003

    Google Scholar 

  • Statistical Office of the Republic of Serbia (SORS) (2012) Natural changes of population in the Republic of Serbia. Statistical Office of the Republic of Serbia, Belgrade

    Google Scholar 

  • Tobler WR (1979) Smooth pycnophylactic interpolation for geographical regions. J Am Stat Assoc 74:519–530

    Article  Google Scholar 

  • Zandbergen PA, Ignizio DA (2010) Comparison of dasymetric mapping techniques for small-area population estimates. Cartogr Geogr Inf Sci 37(3):199–214

    Article  Google Scholar 

  • Zandbergen PA (2011) Dasymetric mapping using high resolution address point datasets. Trans GIS 15(s1):5–27

    Article  Google Scholar 

Download references

Acknowledgments

The paper represents the result of research carried out on projects No. III 47014 “The role and implementation of the National spatial plan and regional development in renewal of strategic research, thinking and governance in Serbia”, TR 36036 “Sustainable spatial development of Danube area in Serbia” and TR 36035 “Spatial, ecological, energy and social aspects of settlements’ development and climate changes—interrelationships” financed by the Ministry of Education and Science of the Republic of Serbia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikola Krunić .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Krunić, N., Bajat, B., Kilibarda, M. (2015). Dasymetric Mapping of Population Distribution in Serbia Based on Soil Sealing Degrees Layer. In: Růžičková, K., Inspektor, T. (eds) Surface Models for Geosciences. Lecture Notes in Geoinformation and Cartography. Springer, Cham. https://doi.org/10.1007/978-3-319-18407-4_12

Download citation

Publish with us

Policies and ethics