Skip to main content

Hormonal Regulation and Systemic Signals of Skin Aging

  • Chapter
Advances in Geriatric Dermatology

Abstract

Tissues throughout the body share a common systemic environment comprising the multitude of circulating factors transported within the vasculature. These circulating factors, including hormones and nutrients, represent many key determinants of cell growth and function. As animals age, the balance of factors in the systemic circulation shifts and thus alters the cellular environment. The age-dependent changes in the systemic circulation exposes tissues, including skin, to a distinct combination of factors that is reflected by alterations in cell and tissue phenotypes with age. This chapter discusses our current understanding of the changes to the systemic milieu that occur as mammals grow old, the influence of these changes on skin health and disease in aged individuals, and the efforts to therapeutically modulate circulating factors to prevent or reverse aging phenotypes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rigopoulos D, Larios G, Katsambas A. Skin signs of systemic diseases. Clin Dermatol. 2011;29:531–40.

    Article  PubMed  Google Scholar 

  2. Jackson R. Historical outline of attempts to classify skin diseases. Can Med Assoc J. 1977;116:1165–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  3. Liddell K. Hippocrates of Cos (460–377 bc). Clin Exp Dermatol. 2000;25:86–8.

    Article  CAS  PubMed  Google Scholar 

  4. Branchet MC, Boisnic S, Frances C, Robert AM. Skin thickness changes in normal aging skin. Gerontology. 1990;36:28–35.

    Article  CAS  PubMed  Google Scholar 

  5. Fenske NA, Lober CW. Structural and functional changes of normal aging skin. J Am Acad Dermatol. 1986;15:571–85.

    Article  CAS  PubMed  Google Scholar 

  6. Fenske NA, Conard CB. Aging skin. Am Fam Physician. 1988;37:219–30.

    CAS  PubMed  Google Scholar 

  7. Kurban RS, Bhawan J. Histologic changes in skin associated with aging. J Dermatol Surg Oncol. 1990;16:908–14.

    Article  CAS  PubMed  Google Scholar 

  8. Brack AS, Conboy MJ, Roy S, Lee M, Kuo CJ, Keller C, et al. Increased Wnt signaling during aging alters muscle stem cell fate and increases fibrosis. Science. 2007;317:807–10.

    Article  CAS  PubMed  Google Scholar 

  9. Conboy IM, Conboy MJ, Wagers AJ, Girma ER, Weissman IL, Rando TA. Rejuvenation of aged progenitor cells by exposure to a young systemic environment. Nature. 2005;433:760–4.

    Article  CAS  PubMed  Google Scholar 

  10. Villeda SA, Luo J, Mosher KI, Zou B, Britschgi M, Bieri G, et al. The ageing systemic milieu negatively regulates neurogenesis and cognitive function. Nature. 2011;477:90–4.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Keyes BE, Segal JP, Heller E, Lien WH, Chang CY, Guo X, et al. Nfatc1 orchestrates aging in hair follicle stem cells. Proc Natl Acad Sci U S A. 2013;110:E4950–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Liu H, Fergusson MM, Castilho RM, Liu J, Cao L, Chen J, et al. Augmented Wnt signaling in a mammalian model of accelerated aging. Science. 2007;317:803–6.

    Article  CAS  PubMed  Google Scholar 

  13. Kuro-o M, Matsumura Y, Aizawa H, Kawaguchi H, Suga T, Utsugi T, et al. Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature. 1997;390:45–51.

    Article  CAS  PubMed  Google Scholar 

  14. Arking DE, Krebsova A, Macek Sr M, Macek Jr M, Arking A, Mian IS, et al. Association of human aging with a functional variant of klotho. Proc Natl Acad Sci U S A. 2002;99:856–61.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Rando TA. Stem cells, ageing and the quest for immortality. Nature. 2006;441:1080–6.

    Article  CAS  PubMed  Google Scholar 

  16. Liu L, Rando TA. Manifestations and mechanisms of stem cell aging. J Cell Biol. 2011;193:257–66.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Oshimori N, Fuchs E. Paracrine TGF-β signaling counterbalances BMP-mediated repression in hair follicle stem cell activation. Cell Stem Cell. 2012;10:63–75.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Quan T, Shao Y, He T, Voorhees JJ, Fisher GJ. Reduced expression of connective tissue growth factor (CTGF/CCN2) mediates collagen loss in chronologically aged human skin. J Invest Dermatol. 2010;130:415–24.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Chujo S, Shirasaki F, Kawara S, Inagaki Y, Kinbara T, Inaoki M, et al. Connective tissue growth factor causes persistent proalpha2(I) collagen gene expression induced by transforming growth factor-beta in a mouse fibrosis model. J Cell Physiol. 2005;203:447–56.

    Article  CAS  PubMed  Google Scholar 

  20. Ashcroft GS, Horan MA, Ferguson MWJ. The effects of ageing on wound healing: immunolocalisation of growth factors and their receptors in a murine incisional model. J Anat. 1997;190:351–65.

    Article  PubMed Central  PubMed  Google Scholar 

  21. Brown RL, Ormsby I, Doetschman TC, Greenhalgh DG. Wound healing in the transforming growth factor-beta-deficient mouse. Wound Repair Regen. 1995;3:25–36.

    Article  CAS  PubMed  Google Scholar 

  22. Le M, Naridze R, Morrison J, Biggs LC, Rhea L, Schutte BC, et al. Transforming growth factor beta 3 is required for excisional wound repair in vivo. PLoS One. 2012;7:e48040.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Martinez-Ferrer M, Afshar-Sherif AR, Uwamariya C, de Crombrugghe B, Davidson JM, Bhowmick NA. Dermal transforming growth factor-? Responsiveness mediates wound contraction and epithelial closure. Am J Pathol. 2010;176:98–107.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Wu L, Siddiqui A, Morris DE, Cox DA, Roth SI, Mustoe TA. Transforming growth factor beta 3 (TGF beta 3) accelerates wound healing without alteration of scar prominence. Histologic and competitive reverse-transcription-polymerase chain reaction studies. Arch Surg. 1997;1960(132):753–60.

    Article  Google Scholar 

  25. Siebert N, Xu W, Grambow E, Zechner D, Vollmar B. Erythropoietin improves skin wound healing and activates the TGF-β signaling pathway. Lab Invest. 2011;91:1753–65.

    Article  CAS  PubMed  Google Scholar 

  26. Quan T, He T, Kang S, Voorhees JJ, Fisher GJ. Ultraviolet irradiation alters transforming growth factor beta/smad pathway in human skin in vivo. J Invest Dermatol. 2002;119:499–506.

    Article  CAS  PubMed  Google Scholar 

  27. Quan T, He T, Kang S, Voorhees JJ, Fisher GJ. Solar ultraviolet irradiation reduces collagen in photoaged human skin by blocking transforming growth factor-beta type II receptor/Smad signaling. Am J Pathol. 2004;165:741–51.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Han K-H, Choi HR, Won CH, Chung JH, Cho KH, Eun HC, et al. Alteration of the TGF-beta/SMAD pathway in intrinsically and UV-induced skin aging. Mech Ageing Dev. 2005;126:560–7.

    Article  CAS  PubMed  Google Scholar 

  29. Chen SJ, Yuan W, Mori Y, Levenson A, Trojanowska M, Varga J. Stimulation of type I collagen transcription in human skin fibroblasts by TGF-beta: involvement of Smad 3. J Invest Dermatol. 1999;112:49–57.

    Article  CAS  PubMed  Google Scholar 

  30. Schmid P, Itin P, Cherry G, Bi C, Cox DA. Enhanced expression of transforming growth factor-beta type I and type II receptors in wound granulation tissue and hypertrophic scar. Am J Pathol. 1998;152:485–93.

    CAS  PubMed Central  PubMed  Google Scholar 

  31. Ghahary A, Shen YJ, Scott PG, Gong Y, Tredget EE. Enhanced expression of mRNA for transforming growth factor-beta, type I and type III procollagen in human post-burn hypertrophic scar tissues. J Lab Clin Med. 1993;122:465–73.

    CAS  PubMed  Google Scholar 

  32. Zhang K, Garner W, Cohen L, Rodriguez J, Phan S. Increased types I and III collagen and transforming growth factor-beta 1 mRNA and protein in hypertrophic burn scar. J Invest Dermatol. 1995;104:750–4.

    Article  CAS  PubMed  Google Scholar 

  33. Adler AS, Sinha S, Kawahara TL, Zhang JY, Segal E, Chang HY. Motif module map reveals enforcement of aging by continual NF-kappaB activity. Genes Dev. 2007;21:3244–57.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Delfino F, Walker WH. Hormonal regulation of the NF-κB signaling pathway. Mol Cell Endocrinol. 1999;157:1–9.

    Article  CAS  PubMed  Google Scholar 

  35. Adler AS, Kawahara TLA, Segal E, Chang HY. Reversal of aging by NFkappaB blockade. Cell Cycle. 2008;7:556–9.

    Article  CAS  PubMed  Google Scholar 

  36. Kirwan JP, Krishnan RK, Weaver JA, Del Aguila LF, Evans WJ. Human aging is associated with altered TNF-alpha production during hyperglycemia and hyperinsulinemia. Am J Physiol Endocrinol Metab. 2001;281:E1137–43.

    CAS  PubMed  Google Scholar 

  37. Gupta S, Chiplunkar S, Kim C, Yel L, Gollapudi S. Effect of age on molecular signaling of TNF-alpha-induced apoptosis in human lymphocytes. Mech Ageing Dev. 2003;124:503–9.

    Article  CAS  PubMed  Google Scholar 

  38. Chakkalakal JV, Jones KM, Basson MA, Brack AS. The aged niche disrupts muscle stem cell quiescence. Nature. 2012;490:355–60.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Komi-Kuramochi A, Kawano M, Oda Y, Asada M, Suzuki M, Oki J, et al. Expression of fibroblast growth factors and their receptors during full-thickness skin wound healing in young and aged mice. J Endocrinol. 2005;186:273–89.

    Article  CAS  PubMed  Google Scholar 

  40. Lupien SJ, de Leon M, de Santi S, Convit A, Tarshish C, Nair NP, et al. Cortisol levels during human aging predict hippocampal atrophy and memory deficits. Nat Neurosci. 1998;1:69–73.

    Article  CAS  PubMed  Google Scholar 

  41. Yen SSC. The biology of menopause. J Reprodin Med Obstet Gynecol. 1977;18:287–96.

    CAS  Google Scholar 

  42. Hall G, Phillips TJ. Estrogen and skin: the effects of estrogen, menopause, and hormone replacement therapy on the skin. J Am Acad Dermatol. 2005;53:555–68.

    Article  PubMed  Google Scholar 

  43. Brincat M, Kabalan S, Studd JW, Moniz CF, de Trafford J, Montgomery J. A study of the decrease of skin collagen content, skin thickness, and bone mass in the postmenopausal woman. Obstet Gynecol. 1987;70:840–5.

    CAS  PubMed  Google Scholar 

  44. Brincat M, Moniz CJ, Studd JW, Darby A, Magos A, Emburey G, et al. Long-term effects of the menopause and sex hormones on skin thickness. Br J Obstet Gynaecol. 1985;92:256–9.

    Article  CAS  PubMed  Google Scholar 

  45. Sauerbronn AV, Fonseca AM, Bagnoli VR, Saldiva PH, Pinotti JA. The effects of systemic hormonal replacement therapy on the skin of postmenopausal women. Int J Gynaecol Obstet. 2000;68:35–41.

    Article  CAS  PubMed  Google Scholar 

  46. Castelo-Branco C, Duran M, González-Merlo J. Skin collagen changes related to age and hormone replacement therapy. Maturitas. 1992;15:113–9.

    Article  CAS  PubMed  Google Scholar 

  47. Maheux R, Naud F, Rioux M, Grenier R, Lemay A, Guy J, et al. A randomized, double-blind, placebo-controlled study on the effect of conjugated estrogens on skin thickness. Am J Obstet Gynecol. 1994;170:642–9.

    Article  CAS  PubMed  Google Scholar 

  48. Bolognia JL, Braverman IM, Rousseau ME, Sarrel PM. Skin changes in menopause. Maturitas. 1989;11:295–304.

    Article  CAS  PubMed  Google Scholar 

  49. Varila E, Rantala I, Oikarinen A, Risteli J, Reunala T, Oksanen H, et al. The effect of topical oestradiol on skin collagen of postmenopausal women. Br J Obstet Gynaecol. 1995;102:985–9.

    Article  CAS  PubMed  Google Scholar 

  50. Punnonen R, Vaajalahti P, Teisala K. Local oestriol treatment improves the structure of elastic fibers in the skin of postmenopausal women. Ann Chir Gynaecol Suppl. 1987;202:39–41.

    CAS  PubMed  Google Scholar 

  51. Henry F, Piérard-Franchimont C, Cauwenbergh G, Piérard GE. Age-related changes in facial skin contours and rheology. J Am Geriatr Soc. 1997;45:220–2.

    Article  CAS  PubMed  Google Scholar 

  52. Piérard GE, Letawe C, Dowlati A, Piérard-Franchimont C. Effect of hormone replacement therapy for menopause on the mechanical properties of skin. J Am Geriatr Soc. 1995;43:662–5.

    Article  PubMed  Google Scholar 

  53. Yoon H-S, Lee S-R, Chung JH. Long-term topical oestrogen treatment of sun-exposed facial skin in post-menopausal women does not improve facial wrinkles or skin elasticity, but induces matrix metalloproteinase-1 expression. Acta Derm Venereol. 2014;94:4–8.

    Article  PubMed  Google Scholar 

  54. Thornton MJ. Estrogens and aging skin. Dermatoendocrinol. 2013;5:264–70.

    Article  PubMed Central  PubMed  Google Scholar 

  55. Ashcroft GS, Greenwell-Wild T, Horan MA, Wahl SM, Ferguson MW. Topical estrogen accelerates cutaneous wound healing in aged humans associated with an altered inflammatory response. Am J Pathol. 1999;155:1137–46.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Margolis DJ, Knauss J, Bilker W. Hormone replacement therapy and prevention of pressure ulcers and venous leg ulcers. Lancet. 2002;359:675–7.

    Article  CAS  PubMed  Google Scholar 

  57. Ashcroft GS, Dodsworth J, van Boxtel E, Tarnuzzer RW, Horan MA, Schultz GS, et al. Estrogen accelerates cutaneous wound healing associated with an increase in TGF-beta1 levels. Nat Med. 1997;3:1209–15.

    Article  CAS  PubMed  Google Scholar 

  58. Ashcroft GS, Mills SJ, Lei K, Gibbons L, Jeong MJ, Taniguchi M, et al. Estrogen modulates cutaneous wound healing by downregulating macrophage migration inhibitory factor. J Clin Invest. 2003;111:1309–18.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Nelson HD, Humphrey LL, Nygren P, Teutsch SM, Allan JD. Postmenopausal hormone replacement therapy: scientific review. JAMA. 2002;288:872–81.

    Article  CAS  PubMed  Google Scholar 

  60. Warren MP. A comparative review of the risks and benefits of hormone replacement therapy regimens. Am J Obstet Gynecol. 2004;190:1141–67.

    Article  CAS  PubMed  Google Scholar 

  61. Surazynski A, Jarzabek K, Haczynski J, Laudanski P, Palka J, Wolczynski S. Differential effects of estradiol and raloxifene on collagen biosynthesis in cultured human skin fibroblasts. Int J Mol Med. 2003;12:803–9.

    CAS  PubMed  Google Scholar 

  62. Sumino H, Ichikawa S, Kasama S, Gibbons L, Jeong MJ, Taniguchi M, et al. Effects of raloxifene and hormone replacement therapy on forearm skin elasticity in postmenopausal women. Maturitas. 2009;62:53–7.

    Article  CAS  PubMed  Google Scholar 

  63. Farage MA, Miller KW, Elsner P, Maibach HI. Characteristics of the aging skin. Adv Wound Care. 2013;2:5–10.

    Article  Google Scholar 

  64. Yeap BB. Testosterone and ill-health in aging men. Nat Clin Pract Endocrinol Metab. 2009;5:113–21.

    Article  CAS  PubMed  Google Scholar 

  65. Sator PG, Schmidt JB, Sator MO, Huber JC, Hönigsmann H. The influence of hormone replacement therapy on skin ageing: a pilot study. Maturitas. 2001;39:43–55.

    Article  CAS  PubMed  Google Scholar 

  66. Wright ET, McGillis TJ, Sobel H. Action of testosterone on the skin of aging male subjects. Dermatology. 1970;140:124–8.

    Article  CAS  Google Scholar 

  67. Brawer MK. Testosterone replacement in men with andropause: an overview. Rev Urol. 2004;6:S9–15.

    PubMed Central  PubMed  Google Scholar 

  68. Glaser RL, Dimitrakakis C, Messenger AG. Improvement in scalp hair growth in androgen-deficient women treated with testosterone: a questionnaire study. Br J Dermatol. 2012;166:274–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. Ellis JA, Stebbing M, Harrap SB. Polymorphism of the androgen receptor gene is associated with male pattern baldness. J Invest Dermatol. 2001;116:452–5.

    Article  CAS  PubMed  Google Scholar 

  70. Zhuo FL, Xu W, Wang L, Wu Y, Xu ZL, Zhao JY. Androgen receptor gene polymorphisms and risk for androgenetic alopecia: a meta-analysis. Clin Exp Dermatol. 2012;37:104–11.

    Article  CAS  PubMed  Google Scholar 

  71. Korting HC, Unholzer A, Schäfer-Korting M, Tausch I, Gassmueller J, Nietsch KH. Different skin thinning potential of equipotent medium-strength glucocorticoids. Skin Pharmacol Appl Skin Physiol. 2002;15:85–91.

    Article  CAS  PubMed  Google Scholar 

  72. Sadagurski M, Yakar S, Weingarten G, Holzenberger M, Rhodes CJ, Breitkreutz D, et al. Insulin-like growth factor 1 receptor signaling regulates skin development and inhibits skin keratinocyte differentiation. Mol Cell Biol. 2006;26:2675–87.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  73. Kimura T, Doi K. Dorsal skin reactions of hairless dogs to topical treatment with corticosteroids. Toxicol Pathol. 1999;27:528–35.

    Article  CAS  PubMed  Google Scholar 

  74. Lavker RM. Structural alterations in exposed and unexposed aged skin. J Invest Dermatol. 1979;73:59–66.

    Article  CAS  PubMed  Google Scholar 

  75. Lee B, Vouthounis C, Stojadinovic O, Brem H, Im M, Tomic-Canic M. From an enhanceosome to a repressosome: molecular antagonism between glucocorticoids and EGF leads to inhibition of wound healing. J Mol Biol. 2005;345:1083–97.

    Article  CAS  PubMed  Google Scholar 

  76. Ashcroft GS, Horan MA, Ferguson MW. Aging is associated with reduced deposition of specific extracellular matrix components, an upregulation of angiogenesis, and an altered inflammatory response in a murine incisional wound healing model. J Invest Dermatol. 1997;108:430–7.

    Article  CAS  PubMed  Google Scholar 

  77. Braverman IM, Fonferko E. Studies in cutaneous aging: I. The elastic fiber network. J Invest Dermatol. 1982;78:434–43.

    Article  CAS  PubMed  Google Scholar 

  78. Varani J, Dame MK, Rittie L, Fligiel SE, Kang S, Fisher GJ, et al. Decreased collagen production in chronologically aged skin: roles of age-dependent alteration in fibroblast function and defective mechanical stimulation. Am J Pathol. 2006;168:1861–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  79. Nuutinen P, Riekki R, Parikka M, Salo T, Autio P, Risteli J, et al. Modulation of collagen synthesis and mRNA by continuous and intermittent use of topical hydrocortisone in human skin. Br J Dermatol. 2003;148:39–45.

    Article  CAS  PubMed  Google Scholar 

  80. Autio P, Oikarinen A, Melkko J, Risteli J, Risteli L. Systemic glucocorticoids decrease the synthesis of type I and type III collagen in human skin in vivo, whereas isotretinoin treatment has little effect. Br J Dermatol. 1994;131:660–3.

    Article  CAS  PubMed  Google Scholar 

  81. Tiganescu A, Tahrani AA, Morgan SA, Otranto M, Desmoulière A, Abrahams L, et al. 11β-Hydroxysteroid dehydrogenase blockade prevents age-induced skin structure and function defects. J Clin Invest. 2013;123:3051–60.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  82. Tiganescu A, Walker EA, Hardy RS, Mayes AE, Stewart PM. Localization, age- and site-dependent expression, and regulation of 11β-hydroxysteroid dehydrogenase type 1 in skin. J Invest Dermatol. 2011;131:30–6.

    Article  CAS  PubMed  Google Scholar 

  83. Chang ALS, Bitter Jr PH, Qu K, Lin M, Rapicavoli NA, Chang HY. Rejuvenation of gene expression pattern of aged human skin by broadband light treatment: a pilot study. J Invest Dermatol. 2013;133:394–402.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  84. Apfeld J, Kenyon C. Cell nonautonomy of C. elegans daf-2 Function in the regulation of diapause and life span. Cell. 1998;95:199–210.

    Article  CAS  PubMed  Google Scholar 

  85. Kenyon CJ. The genetics of ageing. Nature. 2010;464:504–12.

    Article  CAS  PubMed  Google Scholar 

  86. Suh Y, Atzmon G, Cho MO, Hwang D, Liu B, Leahy DJ, et al. Functionally significant insulin-like growth factor I receptor mutations in centenarians. Proc Natl Acad Sci U S A. 2008;105:3438–42.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  87. Vitale G, Brugts MP, Ogliari G, Castaldi D, Fatti LM, Varewijck AJ, et al. Low circulating IGF-I bioactivity is associated with human longevity: findings in centenarians’ offspring. Aging. 2012;4:580–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  88. Sugiyama-Nakagiri Y, Naoe A, Ohuchi A, Kitahara T. Serum levels of IGF-1 are related to human skin characteristics including the conspicuousness of facial pores. Int J Cosmet Sci. 2011;33:144–9.

    Article  CAS  PubMed  Google Scholar 

  89. Chang ALS, Atzmon G, Bergman A, Brugmann S, Atwood SX, Chang HY, et al. Identification of genes promoting skin youthfulness by genome-wide association study. J Invest Dermatol. 2014;134:651–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  90. Sadighi Akha AA, Harper JM, Salmon AB, Schroeder BA, Tyra HM, Rutkowski DT, et al. Heightened induction of proapoptotic signals in response to endoplasmic reticulum stress in primary fibroblasts from a mouse model of longevity. J Biol Chem. 2011;286:30344–51.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  91. Le Clerc S, Taing L, Ezzedine K, Latreille J, Delaneau O, Labib T, et al. A genome-wide association study in Caucasian women points out a putative role of the STXBP5L gene in facial photoaging. J Invest Dermatol. 2013;133:929–35.

    Article  PubMed  Google Scholar 

  92. Tang X, Wang Y, Li D, Luo J, Liu M. Orphan G protein-coupled receptors (GPCRs): biological functions and potential drug targets. Acta Pharmacol Sin. 2012;33:363–71.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory W. Charville .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Charville, G.W., Chang, A.L.S. (2015). Hormonal Regulation and Systemic Signals of Skin Aging. In: Chang, A. (eds) Advances in Geriatric Dermatology. Springer, Cham. https://doi.org/10.1007/978-3-319-18380-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18380-0_4

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18379-4

  • Online ISBN: 978-3-319-18380-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics