Life on the Range: Quine’s Thesis and Semantic Indeterminacy

  • G. Aldo AntonelliEmail author
Part of the Synthese Library book series (SYLI, volume 373)


This paper explores the ramifications of Quine’s Thesis that ontological commitment is determined on the basis of the range of quantified variables in light of a non-standard semantics for the first-order quantifiers analogous to Henkin’s general interpretations for second-order logic. On such a general semantics, the specification of the meaning of the first-order quantifiers requires, besides the selection of a first-order domain D of objects (as is customary), also the further identification of a second-order domain of subsets of D. In the absence of such a further identification, the semantics of “there is” and “for all” is radically indeterminate. Moreover, the general semantics might well be “transparent” in that no semantic facts might be available to discriminate the general from the standard interpretation. The general semantics is rich in consequences for Quine’s thesis: the paper shows how the two halves of the thesis, i.e., the symmetric claims that being the value of a bound variable is necessary or, respectively, sufficient for ontological commitment fail, albeit in interestingly different ways. The result undermines the prospects of philosophical ontology construed as the quintessentially armchair project of extracting ontological commitments from the semantic analysis of quantified statements.


Ontological Commitment General Interpretation Binary Quantifier Existential Generalization Definable Subset 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



I am grateful to Sean Ebels-Duggan, Robbie Hirsch, Elaine Landry, and Adam Sennet for helpful comments.


  1. 1.
    Antonelli, G.A. 2007. Free quantification and logical invariance. Rivista di estetica (special issue “Il significato eluso. Saggi in onore di Diego Marconi,” ed. M. Andronico, A. Paternoster, and A. Voltolini), 33(1): 61–73.Google Scholar
  2. 2.
    Antonelli, G. A. 2010. Numerical abstraction via the Frege quantifier. Notre Dame Journal of Formal Logic 51(2): 161–79.CrossRefGoogle Scholar
  3. 3.
    Antonelli, G.A. 2013. On the general interpretation of first-order quantifiers. Review of Symbolic Logic 6: 637–658.CrossRefGoogle Scholar
  4. 4.
    Azzouni, J. 2004. Deflating existential consequence: A case for nominalism. Oxford/New York: Oxford University Press.CrossRefGoogle Scholar
  5. 5.
    Boolos, G. 1984. To be is to be a value of a variable (or to be some values of some variables). Journal of Philosophy 81(8): 430–449.CrossRefGoogle Scholar
  6. 6.
    Dutilh Novaes, C. 2011. Medieval theories of quantification. In Encyclopedia of medieval philosophy, ed. H. Lagerlund. Dordrecht/New York: Springer.Google Scholar
  7. 7.
    Fara, D., and G. Russell. 2011. The Routledge companion to the philosophy of language. New York: RoutledgeGoogle Scholar
  8. 8.
    Frege, G. 1893–1903. Grundgesetze der Arithmetik. The basic laws of arithmetic: Exposition of the system, ed. Jena Hermann Phole, Partial English Trans. Montgomery Furth. Berkeley: University of California Press, 1964Google Scholar
  9. 9.
    Gödel, K. 1940. The consistency of the axiom of choice and the generalized continuum hypothesis with the axioms of set theory. Annals of mathematics studies, vol. 3. Oxford/New York: Oxford University Press.Google Scholar
  10. 10.
    Henkin, L. 1950. Completeness in the theory of types. Journal of Symbolic Logic 15: 81–91.CrossRefGoogle Scholar
  11. 11.
    Hirsch, E. 2002. Quantifier variance and realism. Philosophical Issues 12(1): 51–73.CrossRefGoogle Scholar
  12. 12.
    Keisler, H.J. 1970. Logic with quantifier “there exists uncountably many”. Annals of Mathematical Logic 1: 1–93CrossRefGoogle Scholar
  13. 13.
    Lambert, K. 1963. Existential import revisited. Notre Dame Journal of Formal Logic 4(4): 288–292.CrossRefGoogle Scholar
  14. 14.
    Leblanc, H., and R.H. Thomason. 1968. Completeness theorems for some presupposition-free logics. Fundamenta Mathematicæ 62: 125–54.Google Scholar
  15. 15.
    Leng, M., A. Paseau, and M. Potter (eds.). 2007. Mathematical knowledge. Oxford/New York: Oxford University Press.Google Scholar
  16. 16.
    Lindström, P. 1966. First-order predicate logic with generalized quantifiers. Theoria 32: 186–95Google Scholar
  17. 17.
    Linnebo, Ø. 2011. Second-order logic. In The continuum companion to philosophical logic, Ch. 4, ed. L. Horsten and R. Pettigrew. London/New York: Continuum.Google Scholar
  18. 18.
    Linnebo, Ø. 2012. Plural quantification. In The stanford encyclopedia of philosophy, ed. Edward N. Zalta.
  19. 19.
    Montague, R. 1974. English as a formal language. In Formal philosophy, ed. R.H. Thomason. Oxford/New York: Oxford University Press.Google Scholar
  20. 20.
    Mostowski, A. 1957. On a generalization of quantifiers. Fundamenta Mathematicæ 44: 12–36.Google Scholar
  21. 21.
    Parsons, T. 1970. Various extensional notions of ontological commitment. Philosophical Studies 21(5): 65–74.CrossRefGoogle Scholar
  22. 22.
    Peters, S., and D. Westerståhl. 2006. Quantifiers in language and logic. Oxford/New York: Oxford University Press.Google Scholar
  23. 23.
    Priest, G. 2008. An introduction to non-classical logics. From if to is. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  24. 24.
    Prior, A.N. 1971. Objects of thought, ed. P.T. Geach and A.J.P. Kenny, ix–175. Oxford: Clarendon Press.Google Scholar
  25. 25.
    Quine, W.V.O. 1948. On what there is. Review of Metaphysics 2(5): 21–38.Google Scholar
  26. 26.
    Quine, W.V.O. 1970. Philosophy of logic, 2nd ed. Englewood Cliffs: Prentice-Hall. 1986, by Harvard University PressGoogle Scholar
  27. 27.
    Rayo, A. 2007. Ontological commitment. Philosophy Compass 2/3: 428–444.Google Scholar
  28. 28.
    Rayo, A, and Yablo, S. 2001. Nominalism through de-nominalization. Nôus 35(1): 74–92.Google Scholar
  29. 29.
    Routley, R. 1982. On what there is not. Philosophy and Phenomenological Research 43(2): 151–177.CrossRefGoogle Scholar
  30. 30.
    Sider, T. 2007. Neo-fregeanism and quantifier variance. Aristotelian Society Supplementary Volume 8(1): 201–232.CrossRefGoogle Scholar
  31. 31.
    Thomason, R.H., and D.R. Johnson. 1969. Predicate calculus with free quantifier variables. The Journal of Symbolic Logic 34(1): 1–7CrossRefGoogle Scholar
  32. 32.
    Thomasson, A.L. 2008. Existence questions. Philosophical Studies 141(1): 63–78.CrossRefGoogle Scholar
  33. 33.
    Van Inwagen, P. 1987. When are objects parts? Philosophical Perspectives vol. I: Metaphysics 1: 21–47.Google Scholar
  34. 34.
    Wright, C. 2007. On quantifying into predicate position. ed. M. Leng, A. Paseau, and M. Potter [15], 150–174.Google Scholar
  35. 35.
    Yasuhara, M. 1969. Incompleteness of L p languages. Fundamenta Mathematicae 66: 147–152.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Philosophy DepartmentUC DavisDavisUSA

Personalised recommendations