Skip to main content

Reliability-Based Shape Design Optimization of Structures Subjected to Fatigue

  • 1998 Accesses

Part of the Computational Methods in Applied Sciences book series (COMPUTMETHODS,volume 38)

Abstract

Fatigue has been played a key role into the design process of structures, since many failures of them are attributed to repeated loading and unloading conditions. Crack growth due to fatigue, represents a critical issue for the integrity and resistance of structures and several numerical methods mainly based on fracture mechanics have been proposed in order to address this issue. Apart from loading, the shape of the structures is directly attributed to their service life. In this study, the extended finite element is integrated into a shape design optimization framework aiming to improve the service life of structural components subject to fatigue. The relation between the geometry of the structural component with the service life is also examined. This investigation is extended into a probabilistic design framework considering both material properties and crack tip initialization as random variables. The applicability and potential of the formulations presented are demonstrated with a characteristic numerical example. It is shown that with proper shape changes, the service life of structural component can be enhanced significantly. Comparisons with optimized shapes found for targeted service life are also addressed, while the choice of initial imperfection position and orientation was found to have a significant effect on the optimal shapes.

Keywords

  • Design Variable
  • Differential Evolution
  • Fatigue Cycle
  • Linear Elastic Fracture Mechanic
  • Harmony Search

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-18320-6_24
  • Chapter length: 38 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   139.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-18320-6
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

References

  1. Aguirre AH, Rionda SB, Coello Coello CA, Lizárraga GL, Montes EM (2004) Handling constraints using multiobjective optimization concepts. Int J Numer Methods Eng 59(15):1989–2017

    Google Scholar 

  2. Anderson TL (2004) Fracture mechanics: fundamentals and applications, 3rd edn. CRC Press, Boca Raton

    Google Scholar 

  3. Babuška I, Melenk JM (1997) The partition of unity method. Int J Numer Methods Eng 40(4):727–758

    CrossRef  MATH  Google Scholar 

  4. Bletzinger KU, Ramm E (2001) Structural optimization and form finding of light weight structures. Comput Struct 79(22–25):2053–2062

    CrossRef  Google Scholar 

  5. Bureerat S, Limtragool J (2008) Structural topology optimisation using simulated annealing with multiresolution design variables. Finite Elem Anal Des 44(12–13):738–747

    CrossRef  Google Scholar 

  6. Chen S, Tortorelli DA (1997) Three-dimensional shape optimization with variational geometry. Struct Optim 13(2–3):81–94

    CrossRef  MATH  Google Scholar 

  7. Chen TY, Chen HC (2009) Mixed-discrete structural optimization using a rank-niche evolution strategy. Eng Optim 41(1):39–58

    CrossRef  Google Scholar 

  8. Coelho RF (2004) Multicriteria optimization with expert rules for mechanical design. Ph.D. Thesis, Universite Libre de Bruxelles, Faculte des Sciences Appliquees, Belgium

    Google Scholar 

  9. Das S, Suganthan P (2011) Differential evolution: a survey of the state-of-the-art. IEEE Trans Evolut Comput 15(1):4–31

    CrossRef  Google Scholar 

  10. Deb K (2000) An efficient constraint handling method for genetic algorithms. Comput Methods Appl Mech Eng 186(2–4):311–338

    CrossRef  MATH  Google Scholar 

  11. Degertekin SO (2012) Improved harmony search algorithms for sizing optimization of truss structures. Comput Struct 92–93:229–241

    CrossRef  Google Scholar 

  12. Dorigo M, Stützle T (2004) Ant colony optimization. MIT Press, Cambridge

    CrossRef  MATH  Google Scholar 

  13. Edke MS, Chang KH (2010) Shape sensitivity analysis for 2D mixed mode fractures using extended FEM (XFEM) and level set method (LSM). Mech Based Des Struct Mach 38(3):328–347

    Google Scholar 

  14. Edke MS, Chang KH (2011) Shape optimization for 2-d mixed-mode fracture using extended FEM (XFEM) and level set method (LSM). Struct Multidiscip Optim 44(2):165–181

    CrossRef  Google Scholar 

  15. Ellingwood B, Galambos TV (1982) Probability-based criteria for structural design. Struct Saf 1(1):15–26

    CrossRef  Google Scholar 

  16. Ellingwood B, Galambos T, MacGregor J, Cornell C (1980) Development of a probability based load criterion for American National Standard A58: building code requirements for minimum design loads in buildings and other structures. U.S, Department of Commerce, National Bureau of Standards, Washington, DC

    Google Scholar 

  17. Erdogan F, Sih GC (1963) On the crack extension in plates under plane loading and transverse shear. J Fluids Eng 85(4):519–525

    Google Scholar 

  18. Farhat F, Nakamura S, Takahashi K (2009) Application of genetic algorithm to optimization of buckling restrained braces for seismic upgrading of existing structures. Comput Struct 87(1–2):110–119

    Google Scholar 

  19. Fogel D (1992) Evolving artificial intelligence. Ph.D. Thesis, University of California, San Diego

    Google Scholar 

  20. Gandomi AH, Alavi AH (2012) Krill herd: a new bio-inspired optimization algorithm. Commun Nonlinear Sci Numer Simul 17(12):4831–4845

    CrossRef  MATH  MathSciNet  Google Scholar 

  21. Gandomi AH, Yang XS (2011) Benchmark problems in structural optimization. In: Koziel S, Yang XS (eds) Computational optimization, methods and algorithms, no. 356 in studies in computational intelligence. Springer, Berlin Heidelberg, pp 259–281

    Google Scholar 

  22. Gandomi AH, Yang XS, Alavi AH (2013) Cuckoo search algorithm: a metaheuristic approach to solve structural optimization problems. Eng Comput 29(1):17–35

    CrossRef  MathSciNet  Google Scholar 

  23. Geem ZW, Kim JH, Loganathan GV (2001) A new heuristic optimization algorithm: harmony search. Simulation 76(2):60–68

    CrossRef  Google Scholar 

  24. Georgioudakis M (2014) Stochastic analysis and optimum design of structures subjected to fracture. Ph.D. Thesis, School of Civil Engineering, National Technical University of Athens (NTUA)

    Google Scholar 

  25. Gholizadeh S, Salajegheh E (2009) Optimal design of structures subjected to time history loading by swarm intelligence and an advanced metamodel. Comput Methods Appl Mech Eng 198(37–40):2936–2949

    CrossRef  MATH  Google Scholar 

  26. Goldberg DE (1989) Genetic algorithms in search, optimization and machine learning, 1st edn. Addison-Wesley Longman Publishing Co., Inc., Boston

    MATH  Google Scholar 

  27. Haddad OB, Afshar A, Mariño MA (2006) Honey-bees mating optimization (HBMO) algorithm: a new heuristic approach for water resources optimization. Water Resour Manage 20(5):661–680

    CrossRef  Google Scholar 

  28. Haftka RT, Grandhi RV (1986) Structural shape optimization—a survey. Comput Methods Appl Mech Eng 57(1):91–106

    CrossRef  MATH  MathSciNet  Google Scholar 

  29. Hansen LU, Häusler SM, Horst P (2008) Evolutionary multicriteria design optimization of integrally stiffened airframe structures. J Aircr 45(6):1881–1889

    CrossRef  Google Scholar 

  30. Hansen N, Ostermeier A (2001) Completely derandomized self-adaptation in evolution strategies. Evolut Comput 9(2):159–195

    CrossRef  Google Scholar 

  31. Hasançebi O (2008) Adaptive evolution strategies in structural optimization: enhancing their computational performance with applications to large-scale structures. Comput Struct 86(1–2):119–132

    Google Scholar 

  32. Hasançebi O, Çarbaş S, Doğan E, Erdal F, Saka MP (2010) Comparison of non-deterministic search techniques in the optimum design of real size steel frames. Comput Struct 88(17–18):1033–1048

    Google Scholar 

  33. Hock W, Schittkowski K (1980) Test examples for nonlinear programming codes. J Optim Theory Appl 30(1):127–129

    CrossRef  MATH  Google Scholar 

  34. Holland JH (1975) Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence. University of Michigan Press, Holland

    Google Scholar 

  35. Igel C, Hansen N, Roth S (2007) Covariance matrix adaptation for multi-objective optimization. Evolut Comput 15(1):1–28

    CrossRef  Google Scholar 

  36. Kaveh A, Shahrouzi M (2008) Dynamic selective pressure using hybrid evolutionary and ant system strategies for structural optimization. Int J Numer Methods Eng 73(4):544–563

    CrossRef  MATH  MathSciNet  Google Scholar 

  37. Kennedy J, Eberhart R (1995) Particle swarm optimization. IEEE Int Conf Neural Netw 4:1942–1948

    Google Scholar 

  38. Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Optimization by simulated annealing. Science 220(4598):671–680

    CrossRef  MATH  MathSciNet  Google Scholar 

  39. Koza JR (1992) Genetic programming: on the programming of computers by means of natural selection. MIT Press, Cambridge

    MATH  Google Scholar 

  40. Kripakaran P, Hall B, Gupta A (2011) A genetic algorithm for design of moment-resisting steel frames. Struct Multidiscip Optim 44(4):559–574

    CrossRef  Google Scholar 

  41. Kunakote T, Bureerat S (2011) Multi-objective topology optimization using evolutionary algorithms. Eng Optim 43(5):541–557

    CrossRef  MathSciNet  Google Scholar 

  42. Lagaros ND (2014) A general purpose real-world structural design optimization computing platform. Struct Multidiscip Optim 49(6):1047–1066

    CrossRef  Google Scholar 

  43. Lagaros ND, Karlaftis MG (2011) A critical assessment of metaheuristics for scheduling emergency infrastructure inspections. Swarm Evolut Comput 1(3):147–163

    CrossRef  Google Scholar 

  44. Lagaros ND, Papadrakakis M (2012) Applied soft computing for optimum design of structures. Struct Multidiscip Optim 45(6):787–799

    CrossRef  MATH  Google Scholar 

  45. Lagaros ND, Fragiadakis M, Papadrakakis M (2004) Optimum design of shell structures with stiffening beams. AIAA J 42(1):175–184

    CrossRef  Google Scholar 

  46. Li L, Wang MY, Wei P (2012) XFEM schemes for level set based structural optimization. Front Mech Eng 7(4):335–356

    CrossRef  Google Scholar 

  47. Manan A, Vio GA, Harmin MY, Cooper JE (2010) Optimization of aeroelastic composite structures using evolutionary algorithms. Eng Optim 42(2):171–184

    CrossRef  Google Scholar 

  48. Martínez FJ, González-Vidosa F, Hospitaler A, Alcalá J (2011) Design of tall bridge piers by ant colony optimization. Eng Struct 33(8):2320–2329

    CrossRef  Google Scholar 

  49. McKay MD, Beckman RJ, Conover WJ (2000) A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 42(1):55–61

    CrossRef  Google Scholar 

  50. Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. Int J Numer Methods Eng 46(1):131–150

    CrossRef  MATH  Google Scholar 

  51. Muc A, Muc-Wierzgoń M (2012) An evolution strategy in structural optimization problems for plates and shells. Compos Struct 94(4):1461–1470

    CrossRef  Google Scholar 

  52. Osher S, Sethian JA (1988) Fronts propagating with curvature dependent speed: algorithms based on hamilton-jacobi formulations. J Comput Phys 79(1):12–49

    CrossRef  MATH  MathSciNet  Google Scholar 

  53. Paris P, Gomez M, Anderson W (1961) A rational analytic theory of fatigue. Trend Eng 13:9–14

    Google Scholar 

  54. Perez RE, Behdinan K (2007) Particle swarm approach for structural design optimization. Comput Struct 85(19–20):1579–1588

    CrossRef  Google Scholar 

  55. Rechenberg I (1973) Evolutionstrategie: Optimierung technischer Systeme nach Prinzipien der biologischen Evolution. Frommann-Holzboog, Stuttgart-Bad Cannstatt

    Google Scholar 

  56. Rice JR (1968) A path independent integral and the approximate analysis of strain concentrations by notches and cracks. J Appl Mech 35:379–386

    CrossRef  Google Scholar 

  57. Riche RL, Haftka RT (2012) On global optimization articles in SMO. Struct Multidiscip Optim 46(5):627–629

    CrossRef  Google Scholar 

  58. Schuëller GI (2006) Developments in stochastic structural mechanics. Arch Appl Mech 75(10–12):755–773

    Google Scholar 

  59. Schwefel HP (1981) Numerical optimization of computer models. Wiley, Chichester, New York

    MATH  Google Scholar 

  60. Sienz J, Hinton E (1997) Reliable structural optimization with error estimation, adaptivity and robust sensitivity analysis. Comput Struct 64(1–4):31–63

    CrossRef  MATH  Google Scholar 

  61. Stolarska M, Chopp DL, Moës N, Belytschko T (2001) Modelling crack growth by level sets in the extended finite element method. Int J Numer Methods Eng 51(8):943–960

    CrossRef  MATH  Google Scholar 

  62. Storn R, Price K (1997) Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J Glob Optim 11(4):341–359

    CrossRef  MATH  MathSciNet  Google Scholar 

  63. Su R, Wang X, Gui L, Fan Z (2011) Multi-objective topology and sizing optimization of truss structures based on adaptive multi-island search strategy. Struct Multidiscip Optim 43(2):275–286

    Google Scholar 

  64. Su Y, Wang SN, Du YE (2013) Optimization algorithm of crack initial angle using the extended finite element method. Appl Mech Mater 444–445:77–84

    CrossRef  Google Scholar 

  65. Wang Q, Fang H, Zou XK (2010) Application of micro-GA for optimal cost base isolation design of bridges subject to transient earthquake loads. Struct Multidiscip Optim 41(5):765–777

    Google Scholar 

  66. Yang XS (2010) Nature-inspired metaheuristic algorithms, 2nd edn. Luniver Press, Bristol

    Google Scholar 

  67. Yang XS, Deb S (2010) Engineering optimisation by cuckoo search. Int J Math Modell Numer Optim 1(4):330–343

    MATH  Google Scholar 

  68. Yang XS, Gandomi AH (2012) Bat algorithm: a novel approach for global engineering optimization. Eng Comput 29(5):464–483

    CrossRef  Google Scholar 

  69. Yang XS, Koziel S (2011) Computational optimization and applications in engineering and industry. Springer, New York

    CrossRef  Google Scholar 

  70. Yau JF, Wang SS, Corten HT (1980) A mixed-mode crack analysis of isotropic solids using conservation laws of elasticity. J Appl Mech 47(2):335–341

    CrossRef  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manolis Georgioudakis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Georgioudakis, M., Lagaros, N.D., Papadrakakis, M. (2015). Reliability-Based Shape Design Optimization of Structures Subjected to Fatigue. In: Lagaros, N., Papadrakakis, M. (eds) Engineering and Applied Sciences Optimization. Computational Methods in Applied Sciences, vol 38. Springer, Cham. https://doi.org/10.1007/978-3-319-18320-6_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18320-6_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18319-0

  • Online ISBN: 978-3-319-18320-6

  • eBook Packages: EngineeringEngineering (R0)