Skip to main content

Computerized Detection of Lesions in Diagnostic Images

  • Chapter
Machine Learning in Radiation Oncology
  • 6940 Accesses

Abstract

Computer-aided detection (CADe) has been an active research area in medical imaging. As imaging technologies advance, a large number of medical images are produced which physicians/radiologists must read. They may overlook lesions from such a large number of medical images. Consequently, CADe that provides suspicious lesions with radiologists/physicians is developed and becoming indispensable in their decision making to prevent them from overlooking lesions. Machine learning (ML) plays an essential role in CADe, because lesions and organs in medical images may be too complex to be represented accurately by a simple equation; modeling of such complex objects often requires a number of parameters that have to be determined by data. In this chapter, ML techniques used in CADe schemes for lung nodules in chest radiography and thoracic CT and those for the detection of polyps in CT colonography (CTC) are described, which include patch-/pixel-based ML and feature-based (segmented-object-based) ML.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Acar B, Beaulieu CF, Gokturk SB, Tomasi C, Paik DS, Jeffrey Jr RB, Yee J, Napel S. Edge displacement field-based classification for improved detection of polyps in CT colonography. IEEE Trans Med Imaging. 2002;21:1461–7.

    PubMed  Google Scholar 

  2. Akansu AN, Haddad RA. Multiresolution signal decomposition. Boston: Academic Press; 1992.

    Google Scholar 

  3. Arimura H, Katsuragawa S, Suzuki K, Li F, Shiraishi J, Sone S, Doi K. Computerized scheme for automated detection of lung nodules in low-dose computed tomography images for lung cancer screening. Acad Radiol. 2004;11:617–29.

    PubMed  Google Scholar 

  4. Arimura H, Li Q, Korogi Y, Hirai T, Katsuragawa S, Yamashita Y, Tsuchiya K, Doi K. Computerized detection of intracranial aneurysms for three-dimensional MR angiography: feature extraction of small protrusions based on a shape-based difference image technique. Med Phys. 2006;33:394–401.

    PubMed  Google Scholar 

  5. Armato 3rd SG, Giger ML, MacMahon H. Automated detection of lung nodules in CT scans: preliminary results. Med Phys. 2001;28:1552–61.

    PubMed  Google Scholar 

  6. Armato 3rd SG, Giger ML, Moran CJ, Blackburn JT, Doi K, MacMahon H. Computerized detection of pulmonary nodules on CT scans. Radiographics. 1999;19:1303–11.

    PubMed  Google Scholar 

  7. Armato 3rd SG, Li F, Giger ML, MacMahon H, Sone S, Doi K. Lung cancer: performance of automated lung nodule detection applied to cancers missed in a CT screening program. Radiology. 2002;225:685–92.

    PubMed  Google Scholar 

  8. Armato 3rd SG, McLennan G, McNitt-Gray MF, Meyer CR, Yankelevitz D, Aberle DR, Henschke CI, Hoffman EA, Kazerooni EA, MacMahon H, Reeves AP, Croft BY, Clarke LP. Lung image database consortium: developing a resource for the medical imaging research community. Radiology. 2004;232:739–48.

    PubMed  Google Scholar 

  9. Austin JH, Romney BM, Goldsmith LS. Missed bronchogenic carcinoma: radiographic findings in 27 patients with a potentially resectable lesion evident in retrospect. Radiology. 1992;182:115–22.

    CAS  PubMed  Google Scholar 

  10. Barron AR. Universal approximation bounds for superpositions of a sigmoidal function. IEEE Trans Info Theory. 1993;39:930–45.

    Google Scholar 

  11. Bengio Y, Lamblin P, Popovici D, Larochelle H. Greedy layer-wise training of deep networks. Adv Neural Info Process Syst. 2007;19:153.

    Google Scholar 

  12. Bishop CM. Neural networks for pattern recognition. New York: Oxford University Press; 1995.

    Google Scholar 

  13. Bunch PC, Hamilton JF, Sanderson GK, Simmons AH. A free-response approach to the measurement and characterization of radiographic-observer performance. J Appl Photogr Eng. 1978;4:166–71.

    Google Scholar 

  14. Calabrese D, Zhou K, Liu Y, Suzuki K. Improved segmentation of liver in CT with massive-training artificial neural network (MTANN) liver enhancer. In: Proceedings of IEEE engineering in medicine and biology conference (IEEE EMBC), Osaka; 2013.

    Google Scholar 

  15. Chan HP, Doi K, Galhotra S, Vyborny CJ, MacMahon H, Jokich PM. Image feature analysis and computer-aided diagnosis in digital radiography. I. Automated detection of microcalcifications in mammography. Med Phys. 1987;14:538–48.

    CAS  PubMed  Google Scholar 

  16. Chan HP, Sahiner B, Helvie MA, Petrick N, Roubidoux MA, Wilson TE, Adler DD, Paramagul C, Newman JS, Sanjay-Gopal S. Improvement of radiologists’ characterization of mammographic masses by using computer-aided diagnosis: an ROC study. Radiology. 1999;212:817–27.

    CAS  PubMed  Google Scholar 

  17. Chan HP, Sahiner B, Wagner RF, Petrick N. Classifier design for computer-aided diagnosis: effects of finite sample size on the mean performance of classical and neural network classifiers. Med Phys. 1999;26:2654–68.

    CAS  PubMed  Google Scholar 

  18. Chen S, Suzuki K. Computerized detection of lung nodules by means of “virtual dual-energy” radiography. IEEE Trans Biomed Eng. 2013;60:369–78. doi:10.1109/TBME.2012.2226583.

    PubMed Central  PubMed  Google Scholar 

  19. Chen S, Suzuki K. Separation of bones from chest radiographs by means of anatomically specific multiple massive-training ANNs combined with total variation minimization smoothing. IEEE Trans Med Imaging. 2014;33:246–57. doi:10.1109/TMI.2013.2284016.

    Google Scholar 

  20. Chen S, Suzuki K, MacMahon H. A computer-aided diagnostic scheme for lung nodule detection in chest radiographs by means of two-stage nodule-enhancement with support vector classification. Med Phys. 2011;38:1844–58.

    PubMed Central  PubMed  Google Scholar 

  21. Chen S, Suzuki K, MacMahon H. Development and evaluation of a computer-aided diagnostic scheme for lung nodule detection in chest radiographs by means of two-stage nodule enhancement with support vector classification. Med Phys. 2011;38:1844–58.

    PubMed Central  PubMed  Google Scholar 

  22. Coppini G, Diciotti S, Falchini M, Villari N, Valli G. Neural networks for computer-aided diagnosis: detection of lung nodules in chest radiograms. IEEE Trans Inf Technol Biomed. 2003;7:344–57.

    PubMed  Google Scholar 

  23. Dachman AH. Atlas of virtual colonoscopy. New York: Springer; 2003.

    Google Scholar 

  24. Dachman AH, Obuchowski NA, Hoffmeister JW, Hinshaw JL, Frew MI, Winter TC, Van Uitert RL, Periaswamy S, Summers RM, Hillman BJ. Effect of computer-aided detection for CT colonography in a multireader, multicase trial. Radiology. 2010;256:827–35. doi:10.1148/radiol.10091890.

    PubMed Central  PubMed  Google Scholar 

  25. Dean JC, Ilvento CC. Improved cancer detection using computer-aided detection with diagnostic and screening mammography: prospective study of 104 cancers. AJR Am J Roentgenol. 2006;187:20–8.

    PubMed  Google Scholar 

  26. Doi K. Current status and future potential of computer-aided diagnosis in medical imaging. Br J Radiol. 2005;78 Spec No 1:S3–19.

    CAS  PubMed  Google Scholar 

  27. Doi K. Computer-aided diagnosis in medical imaging: historical review, current status and future potential. Comput Med Imaging Graph. 2007;31:198–211.

    PubMed Central  PubMed  Google Scholar 

  28. Doshi T, Rusinak D, Halvorsen RA, Rockey DC, Suzuki K, Dachman AH. CT colonography: false-negative interpretations. Radiology. 2007;244:165–73.

    PubMed  Google Scholar 

  29. Drukker K, Giger ML, Metz CE. Robustness of computerized lesion detection and classification scheme across different breast US platforms. Radiology. 2005;237:834–40.

    PubMed  Google Scholar 

  30. Duda RO, Hart PE, Stork DG. Pattern recognition. 2nd ed. Hoboken: Wiley Interscience; 2001.

    Google Scholar 

  31. El-Naqa I, Yang Y, Wernick MN, Galatsanos NP, Nishikawa RM. A support vector machine approach for detection of microcalcifications. IEEE Trans Med Imaging. 2002;21:1552–63.

    PubMed  Google Scholar 

  32. Farag AA, El-Baz A, Gimelfarb G, El-Ghar MA, Eldiasty T. Quantitative nodule detection in low dose chest CT scans: new template modeling and evaluation for CAD system design. Med Image Comput Comput Assist Interv. 2005;8:720–8.

    PubMed  Google Scholar 

  33. Fletcher JG, Booya F, Johnson CD, Ahlquist D. CT colonography: unraveling the twists and turns. Curr Opin Gastroenterol. 2005;21:90–8.

    CAS  PubMed  Google Scholar 

  34. Fukunaga K. Introduction to statistical pattern recognition. 2nd ed. San Diego: Academic Press; 1990.

    Google Scholar 

  35. Ge J, Sahiner B, Hadjiiski LM, Chan HP, Wei J, Helvie MA, Zhou C. Computer aided detection of clusters of microcalcifications on full field digital mammograms. Med Phys. 2006;33:2975–88.

    PubMed  Google Scholar 

  36. Ge Z, Sahiner B, Chan HP, Hadjiiski LM, Cascade PN, Bogot N, Kazerooni EA, Wei J, Zhou C. Computer-aided detection of lung nodules: false positive reduction using a 3D gradient field method and 3D ellipsoid fitting. Med Phys. 2005;32:2443–54.

    PubMed Central  PubMed  Google Scholar 

  37. Giger ML, Ahn N, Doi K, MacMahon H, Metz CE. Computerized detection of pulmonary nodules in digital chest images: use of morphological filters in reducing false-positive detections. Med Phys. 1990;17:861–5.

    CAS  PubMed  Google Scholar 

  38. Giger ML, Bae KT, MacMahon H. Computerized detection of pulmonary nodules in computed tomography images. Invest Radiol. 1994;29:459–65.

    CAS  PubMed  Google Scholar 

  39. Giger ML, Chan HP, Boone J. Anniversary paper: history and status of CAD and quantitative image analysis: the role of Medical Physics and AAPM. Med Phys. 2008;35:5799–820.

    PubMed Central  PubMed  Google Scholar 

  40. Giger ML, Doi K, MacMahon H. Image feature analysis and computer-aided diagnosis in digital radiography. 3. Automated detection of nodules in peripheral lung fields. Med Phys. 1988;15:158–66.

    CAS  PubMed  Google Scholar 

  41. Giger ML, Suzuki K. Computer-aided diagnosis (CAD). In: Feng DD, editor. Biomedical information technology. Amsterdam/Boston: Academic Press; 2007. p. 359–74.

    Google Scholar 

  42. Gilhuijs KG, Giger ML, Bick U. Computerized analysis of breast lesions in three dimensions using dynamic magnetic-resonance imaging. Med Phys. 1998;25:1647–54.

    CAS  PubMed  Google Scholar 

  43. Gokturk SB, Tomasi C, Acar B, Beaulieu CF, Paik DS, Jeffrey Jr RB, Yee J, Napel S. A statistical 3-D pattern processing method for computer-aided detection of polyps in CT colonography. IEEE Trans Med Imaging. 2001;20:1251–60.

    CAS  PubMed  Google Scholar 

  44. Golosio B, Masala GL, Piccioli A, Oliva P, Carpinelli M, Cataldo R, Cerello P, De Carlo F, Falaschi F, Fantacci ME, Gargano G, Kasae P, Torsello M. A novel multithreshold method for nodule detection in lung CT. Med Phys. 2009;36:3607–18.

    PubMed  Google Scholar 

  45. Gurcan MN, Sahiner B, Petrick N, Chan HP, Kazerooni EA, Cascade PN, Hadjiiski L. Lung nodule detection on thoracic computed tomography images: preliminary evaluation of a computer-aided diagnosis system. Med Phys. 2002;29:2552–8.

    PubMed  Google Scholar 

  46. Gurney JW. Missed lung cancer at CT: imaging findings in nine patients. Radiology. 1996;199:117–22.

    CAS  PubMed  Google Scholar 

  47. Hardie RC, Rogers SK, Wilson T, Rogers A. Performance analysis of a new computer aided detection system for identifying lung nodules on chest radiographs. Med Image Anal. 2008;12:240–58. doi:10.1016/j.media.2007.10.004. S1361-8415(07)00103-X [pii].

    PubMed  Google Scholar 

  48. Haykin S. Neural networks. Upper Saddle River: Prentice Hall; 1998.

    Google Scholar 

  49. He L, Chao Y, Suzuki K. A run-based two-scan labeling algorithm. IEEE Trans Image Process. 2008;17:749–56. doi:10.1109/TIP.2008.919369.

    PubMed  Google Scholar 

  50. He L, Chao Y, Suzuki K, Wu K. Fast connected-component labeling. Pattern Recognit. 2009;42:1977–87.

    Google Scholar 

  51. Heelan RT, Flehinger BJ, Melamed MR, Zaman MB, Perchick WB, Caravelli JF, Martini N. Non-small-cell lung cancer: results of the New York screening program. Radiology. 1984;151:289–93.

    CAS  PubMed  Google Scholar 

  52. Henschke CI, McCauley DI, Yankelevitz DF, Naidich DP, McGuinness G, Miettinen OS, Libby DM, Pasmantier MW, Koizumi J, Altorki NK, Smith JP. Early Lung Cancer Action Project: overall design and findings from baseline screening. Lancet. 1999;354:99–105.

    CAS  PubMed  Google Scholar 

  53. Henschke CI, Yankelevitz DF, Naidich DP, McCauley DI, McGuinness G, Libby DM, Smith JP, Pasmantier MW, Miettinen OS. CT screening for lung cancer: suspiciousness of nodules according to size on baseline scans. Radiology. 2004;231:164–8.

    PubMed  Google Scholar 

  54. Hinton G, Osindero S, Teh Y-W. A fast learning algorithm for deep belief nets. Neural Comput. 2006;18:1527–54.

    PubMed  Google Scholar 

  55. Hornik K, Stinchcombe M, White H. Multilayer feedforward networks are universal approximators. Neural Netw. 1989;2:359–66.

    Google Scholar 

  56. Jemal A, Murray T, Ward E, Samuels A, Tiwari RC, Ghafoor A, Feuer EJ, Thun MJ. Cancer statistics. Cancer J Clin. 2005;55:10–30.

    Google Scholar 

  57. Jerebko AK, Malley JD, Franaszek M, Summers RM. Multiple neural network classification scheme for detection of colonic polyps in CT colonography data sets. Acad Radiol. 2003;10:154–60.

    PubMed  Google Scholar 

  58. Jerebko AK, Malley JD, Franaszek M, Summers RM. Support vector machines committee classification method for computer-aided polyp detection in CT colonography. Acad Radiol. 2005;12:479–86.

    PubMed  Google Scholar 

  59. Jerebko AK, Summers RM, Malley JD, Franaszek M, Johnson CD. Computer-assisted detection of colonic polyps with CT colonography using neural networks and binary classification trees. Med Phys. 2003;30:52–60.

    PubMed  Google Scholar 

  60. Kaneko M, Eguchi K, Ohmatsu H, Kakinuma R, Naruke T, Suemasu K, Moriyama N. Peripheral lung cancer: screening and detection with low-dose spiral CT versus radiography. Radiology. 1996;201:798–802.

    CAS  PubMed  Google Scholar 

  61. Kiss G, Van Cleynenbreugel J, Thomeer M, Suetens P, Marchal G. Computer-aided diagnosis in virtual colonography via combination of surface normal and sphere fitting methods. Eur Radiol. 2002;12:77–81.

    PubMed  Google Scholar 

  62. Lawrence S, Giles CL, Tsoi AC, Back AD. Face recognition: a convolutional neural-network approach. IEEE Trans Neural Netw. 1997;8:98–113.

    CAS  PubMed  Google Scholar 

  63. Lee Y, Hara T, Fujita H, Itoh S, Ishigaki T. Automated detection of pulmonary nodules in helical CT images based on an improved template-matching technique. IEEE Trans Med Imaging. 2001;20:595–604.

    CAS  PubMed  Google Scholar 

  64. Li F, Aoyama M, Shiraishi J, Abe H, Li Q, Suzuki K, Engelmann R, Sone S, Macmahon H, Doi K. Radiologists’ performance for differentiating benign from malignant lung nodules on high-resolution CT using computer-estimated likelihood of malignancy. Am J Roentgenol. 2004;183:1209–15.

    Google Scholar 

  65. Li F, Arimura H, Suzuki K, Shiraishi J, Li Q, Abe H, Engelmann R, Sone S, MacMahon H, Doi K. Computer-aided detection of peripheral lung cancers missed at CT: ROC analyses without and with localization. Radiology. 2005;237:684–90.

    PubMed  Google Scholar 

  66. Li F, Sone S, Abe H, MacMahon H, Armato 3rd SG, Doi K. Lung cancers missed at low-dose helical CT screening in a general population: comparison of clinical, histopathologic, and imaging findings. Radiology. 2002;225:673–83.

    PubMed  Google Scholar 

  67. Li J, Van Uitert R, Yao J, Petrick N, Franaszek M, Huang A, Summers RM. Wavelet method for CT colonography computer-aided polyp detection. Med Phys. 2008;35:3527–38.

    PubMed Central  PubMed  Google Scholar 

  68. Lin JS, Lo SB, Hasegawa A, Freedman MT, Mun SK. Reduction of false positives in lung nodule detection using a two-level neural classification. IEEE Trans Med Imaging. 1996;15:206–17. doi:10.1109/42.491422.

    CAS  PubMed  Google Scholar 

  69. Lo SB, Lou SA, Lin JS, Freedman MT, Chien MV, Mun SK. Artificial convolution neural network techniques and applications for lung nodule detection. IEEE Trans Med Imaging. 1995;14:711–8. doi:10.1109/42.476112.

    CAS  PubMed  Google Scholar 

  70. Lo SC, Freedman MT, Lin JS, Mun SK. Automatic lung nodule detection using profile matching and back-propagation neural network techniques. J Digit Imaging. 1993;6:48–54.

    CAS  PubMed  Google Scholar 

  71. Lo SC, Li H, Wang Y, Kinnard L, Freedman MT. A multiple circular path convolution neural network system for detection of mammographic masses. IEEE Trans Med Imaging. 2002;21:150–8. doi:10.1109/42.993133.

    PubMed  Google Scholar 

  72. Lo SC, Lou SL, Lin JS, Freedman MT, Chien MV, Mun SK. Artificial convolution neural network techniques and applications to lung nodule detection. IEEE Trans Med Imaging. 1995;14:711–8.

    CAS  PubMed  Google Scholar 

  73. Lo SCB, Chan HP, Lin JS, Li H, Freedman MT, Mun SK. Artificial convolution neural network for medical image pattern recognition. Neural Netw. 1995;8:1201–14.

    Google Scholar 

  74. Loog M, van Ginneken B. Segmentation of the posterior ribs in chest radiographs using iterated contextual pixel classification. IEEE Trans Med Imaging. 2006;25:602–11.

    PubMed  Google Scholar 

  75. Loog M, van Ginneken B, Schilham AM. Filter learning: application to suppression of bony structures from chest radiographs. Med Image Anal. 2006;10:826–40.

    CAS  PubMed  Google Scholar 

  76. Lostumbo A, Suzuki K, Dachman AH. Flat lesions in CT colonography. Abdom Imaging. 2010;35:578–83. doi:10.1007/s00261-009-9562-3.

    PubMed  Google Scholar 

  77. Lostumbo A, Wanamaker C, Tsai J, Suzuki K, Dachman AH. Comparison of 2D and 3D views for evaluation of flat lesions in CT colonography. Acad Radiol. 2010;17:39–47. doi:10.1016/j.acra.2009.07.004. S1076-6332(09)00400-0 [pii].

    PubMed  Google Scholar 

  78. Macari M, Bini EJ. CT colonography: where have we been and where are we going? Radiology. 2005;237:819–33.

    PubMed  Google Scholar 

  79. Matsumoto S, Kundel HL, Gee JC, Gefter WB, Hatabu H. Pulmonary nodule detection in CT images with quantized convergence index filter. Med Image Anal. 2006;10:343–52. doi:10.1016/j.media.2005.07.001.

    PubMed  Google Scholar 

  80. Messay T, Hardie RC, Rogers SK. A new computationally efficient CAD system for pulmonary nodule detection in CT imagery. Med Image Anal. 2010;14:390–406. doi:10.1016/j.media.2010.02.004.

    PubMed  Google Scholar 

  81. Miettinen OS, Henschke CI. CT screening for lung cancer: coping with nihilistic recommendations. Radiology. 2001;221:592–6.

    CAS  PubMed  Google Scholar 

  82. Muramatsu C, Li Q, Schmidt R, Suzuki K, Shiraishi J, Newstead G, Doi K. Experimental determination of subjective similarity for pairs of clustered microcalcifications on mammograms: observer study results. Med Phys. 2006;33:3460–8.

    PubMed  Google Scholar 

  83. Muramatsu C, Li Q, Schmidt RA, Shiraishi J, Suzuki K, Newstead GM, Doi K. Determination of subjective similarity for pairs of masses and pairs of clustered microcalcifications on mammograms: comparison of similarity ranking scores and absolute similarity ratings. Med Phys. 2007;34:2890–5.

    PubMed  Google Scholar 

  84. Muramatsu C, Li Q, Suzuki K, Schmidt RA, Shiraishi J, Newstead GM, Doi K. Investigation of psychophysical measure for evaluation of similar images for mammographic masses: preliminary results. Med Phys. 2005;32:2295–304.

    PubMed  Google Scholar 

  85. Murphy GP, Lawrence W, Lenhard RE, American Cancer Society. American Cancer Society textbook of clinical oncology. 2nd ed. Atlanta: The Society; 1995.

    Google Scholar 

  86. Murphy K, van Ginneken B, Schilham AM, de Hoop BJ, Gietema HA, Prokop M. A large-scale evaluation of automatic pulmonary nodule detection in chest CT using local image features and k-nearest-neighbour classification. Med Image Anal. 2009;13:757–70. doi:10.1016/j.media.2009.07.001.

    CAS  PubMed  Google Scholar 

  87. Nappi J, Yoshida H. Automated detection of polyps with CT colonography: evaluation of volumetric features for reduction of false-positive findings. Acad Radiol. 2002;9:386–97.

    PubMed  Google Scholar 

  88. Neubauer C. Evaluation of convolutional neural networks for visual recognition. IEEE Trans Neural Netw. 1998;9:685–96.

    Google Scholar 

  89. Oda S, Awai K, Suzuki K, Yanaga Y, Funama Y, MacMahon H, Yamashita Y. Performance of radiologists in detection of small pulmonary nodules on chest radiographs: effect of rib suppression with a massive-training artificial neural network. AJR Am J Roentgenol. 2009;193:W397–402. doi:10.2214/AJR.09.2431. 193/5/W397 [pii].

    PubMed  Google Scholar 

  90. Paik DS, Beaulieu CF, Rubin GD, Acar B, Jeffrey Jr RB, Yee J, Dey J, Napel S. Surface normal overlap: a computer-aided detection algorithm with application to colonic polyps and lung nodules in helical CT. IEEE Trans Med Imaging. 2004;23:661–75.

    PubMed  Google Scholar 

  91. Penedo MG, Carreira MJ, Mosquera A, Cabello D. Computer-aided diagnosis: a neural-network-based approach to lung nodule detection. IEEE Trans Med Imaging. 1998;17:872–80.

    CAS  PubMed  Google Scholar 

  92. Petrick N, Haider M, Summers RM, Yeshwant SC, Brown L, Iuliano EM, Louie A, Choi JR, Pickhardt PJ. CT colonography with computer-aided detection as a second reader: observer performance study. Radiology. 2008;246:148–56.

    PubMed  Google Scholar 

  93. Pu J, Zheng B, Leader JK, Wang XH, Gur D. An automated CT based lung nodule detection scheme using geometric analysis of signed distance field. Med Phys. 2008;35:3453–61.

    PubMed Central  PubMed  Google Scholar 

  94. Retico A, Delogu P, Fantacci ME, Gori I, Preite Martinez A. Lung nodule detection in low-dose and thin-slice computed tomography. Comput Biol Med. 2008;38:525–34. doi:10.1016/j.compbiomed.2008.02.001.

    CAS  PubMed  Google Scholar 

  95. Riccardi A, Petkov TS, Ferri G, Masotti M, Campanini R. Computer-aided detection of lung nodules via 3D fast radial transform, scale space representation, and Zernike MIP classification. Med Phys. 2011;38:1962–71.

    PubMed  Google Scholar 

  96. Rockey DC, Paulson E, Niedzwiecki D, Davis W, Bosworth HB, Sanders L, Yee J, Henderson J, Hatten P, Burdick S, Sanyal A, Rubin DT, Sterling M, Akerkar G, Bhutani MS, Binmoeller K, Garvie J, Bini EJ, McQuaid K, Foster WL, Thompson WM, Dachman A, Halvorsen R. Analysis of air contrast barium enema, computed tomographic colonography, and colonoscopy: prospective comparison. Lancet. 2005;365:305–11. doi:10.1016/S0140-6736(05)17784-8. S0140673605177848 [pii].

    CAS  PubMed  Google Scholar 

  97. Rumelhart DE, Hinton GE, Williams RJ. Learning internal representations by error propagation. Parallel Distrib Process. 1986;1:318–62.

    Google Scholar 

  98. Rumelhart DE, Hinton GE, Williams RJ. Learning representations by back-propagating errors. Nature. 1986;323:533–6.

    Google Scholar 

  99. Sahiner B, Chan HP, Hadjiiski L. Classifier performance prediction for computer-aided diagnosis using a limited dataset. Med Phys. 2008;35:1559–70.

    PubMed Central  PubMed  Google Scholar 

  100. Sahiner B, Chan HP, Petrick N, Wei D, Helvie MA, Adler DD, Goodsitt MM. Classification of mass and normal breast tissue: a convolution neural network classifier with spatial domain and texture images. IEEE Trans Med Imaging. 1996;15:598–610. doi:10.1109/42.538937.

    CAS  PubMed  Google Scholar 

  101. Shah PK, Austin JH, White CS, Patel P, Haramati LB, Pearson GD, Shiau MC, Berkmen YM. Missed non-small cell lung cancer: radiographic findings of potentially resectable lesions evident only in retrospect. Radiology. 2003;226:235–41.

    PubMed  Google Scholar 

  102. Shen D, Wu G, Zhang D, Yan P, Suzuki K, Wang F. Machine learning in medical imaging. Comput Med Imaging Graph. 2014;41:1–2.

    Google Scholar 

  103. Shiraishi J, Li Q, Suzuki K, Engelmann R, Doi K. Computer-aided diagnostic scheme for the detection of lung nodules on chest radiographs: localized search method based on anatomical classification. Med Phys. 2006;33:2642–53.

    PubMed  Google Scholar 

  104. Soetikno RM, Kaltenbach T, Rouse RV, Park W, Maheshwari A, Sato T, Matsui S, Friedland S. Prevalence of nonpolypoid (flat and depressed) colorectal neoplasms in asymptomatic and symptomatic adults. JAMA. 2008;299:1027–35.

    CAS  PubMed  Google Scholar 

  105. Sone S, Takashima S, Li F, Yang Z, Honda T, Maruyama Y, Hasegawa M, Yamanda T, Kubo K, Hanamura K, Asakura K. Mass screening for lung cancer with mobile spiral computed tomography scanner. Lancet. 1998;351:1242–5.

    CAS  PubMed  Google Scholar 

  106. Stephane GM. A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans Pattern Anal Mach Intell. 1989;11:674–93.

    Google Scholar 

  107. Summers RM, Beaulieu CF, Pusanik LM, Malley JD, Jeffrey Jr RB, Glazer DI, Napel S. Automated polyp detector for CT colonography: feasibility study. Radiology. 2000;216:284–90.

    CAS  PubMed  Google Scholar 

  108. Summers RM, Johnson CD, Pusanik LM, Malley JD, Youssef AM, Reed JE. Automated polyp detection at CT colonography: feasibility assessment in a human population. Radiology. 2001;219:51–9.

    CAS  PubMed  Google Scholar 

  109. Summers RM, Yao J, Pickhardt PJ, Franaszek M, Bitter I, Brickman D, Krishna V, Choi JR. Computed tomographic virtual colonoscopy computer-aided polyp detection in a screening population. Gastroenterology. 2005;129:1832–44.

    PubMed Central  PubMed  Google Scholar 

  110. Suzuki K. Determining the receptive field of a neural filter. J Neural Eng. 2004;1:228–37. doi:10.1088/1741-2560/1/4/006. S1741-2560(04)85485-5 [pii].

    PubMed  Google Scholar 

  111. Suzuki K. A supervised ‘lesion-enhancement’ filter by use of a massive-training artificial neural network (MTANN) in computer-aided diagnosis (CAD). Phys Med Biol. 2009;54:S31–45. doi:10.1088/0031-9155/54/18/S03. S0031-9155(09)14266-5 [pii].

    PubMed Central  PubMed  Google Scholar 

  112. Suzuki K. Machine learning for medical imaging. Algorithms. 2010. vol. 3. Special issue.

    Google Scholar 

  113. Suzuki K. Machine learning for medical imaging. Algorithms. 2012a. vol. 5. Special issue.

    Google Scholar 

  114. Suzuki K. Pixel-based machine learning (PML) in medical imaging. Int J Biomed Imaging. 2012b:Article ID 792079, 18 pages.

    Google Scholar 

  115. Suzuki K. Pixel-based machine learning in medical imaging. Int J Biomed Imaging. 2012c;2012:792079. doi:10.1155/2012/792079.

  116. Suzuki K. A review of computer-aided diagnosis in thoracic and colonic imaging. Quant Imaging Med Surg. 2012d;2:163–76. doi:10.3978/j.issn.2223-4292.2012.09.02.

  117. Suzuki K. Machine learning in computer-aided diagnosis of the thorax and colon in CT: a survey. IEICE Trans Info Syst. 2013;E96-D:772–83.

    Google Scholar 

  118. Suzuki K, Abe H, Li F, Doi K. Suppression of the contrast of ribs in chest radiographs by means of massive training artificial neural network. Proc SPIE Med Imaging. 2004;5370:1109–19.

    Google Scholar 

  119. Suzuki K, Abe H, Li F, Doi K. Suppression of the contrast of ribs in chest radiographs by means of massive training artificial neural network. San Diego: Proceeding- SPIE Medical Imaging (SPIE MI); 2004. p. 1109–19.

    Google Scholar 

  120. Suzuki K, Abe H, MacMahon H, Doi K. Image-processing technique for suppressing ribs in chest radiographs by means of massive training artificial neural network (MTANN). IEEE Trans Med Imaging. 2006;25:406–16. doi:10.1109/TMI.2006.871549.

    PubMed  Google Scholar 

  121. Suzuki K, Armato 3rd SG, Li F, Sone S, Doi K. Massive training artificial neural network (MTANN) for reduction of false positives in computerized detection of lung nodules in low-dose computed tomography. Med Phys. 2003;30:1602–17.

    PubMed  Google Scholar 

  122. Suzuki K, Dachman AH. Computer-aided diagnosis in CT colonography. In: Dachman AH, Laghi A, editors. Atlas of virtual colonoscopy. 2nd ed. New York: Springer; 2011. p. 163–82.

    Google Scholar 

  123. Suzuki K, Doi K. How can a massive training artificial neural network (MTANN) be trained with a small number of cases in the distinction between nodules and vessels in thoracic CT? Acad Radiol. 2005;12:1333–41.

    PubMed  Google Scholar 

  124. Suzuki K, Hori M, McFarland E, Friedman AC, Rockey DC, Dachman AH. Can CAD help improve the performance of radiologists in detection of difficult polyps in CT colonography? In: Proceedings of RSNA annual meeting, Chicago; 2009. p. 872.

    Google Scholar 

  125. Suzuki K, Horiba I, Sugie N. A simple neural network pruning algorithm with application to filter synthesis. Neural Process Lett. 2001;13:43–53.

    Google Scholar 

  126. Suzuki K, Horiba I, Sugie N. Efficient approximation of neural filters for removing quantum noise from images. IEEE Trans Signal Process. 2002;50:1787–99.

    Google Scholar 

  127. Suzuki K, Horiba I, Sugie N. Linear-time connected-component labeling based on sequential local operations. Comput Vis Image Underst. 2003;89:1–23.

    Google Scholar 

  128. Suzuki K, Horiba I, Sugie N. Neural edge enhancer for supervised edge enhancement from noisy images. IEEE Trans Pattern Anal Mach Intell. 2003;25:1582–96.

    Google Scholar 

  129. Suzuki K, Horiba I, Sugie N, Nanki M. Neural filter with selection of input features and its application to image quality improvement of medical image sequences. IEICE Trans Info Syst. 2002;E85-D:1710–8.

    Google Scholar 

  130. Suzuki K, Horiba I, Sugie N, Nanki M. Extraction of left ventricular contours from left ventriculograms by means of a neural edge detector. IEEE Trans Med Imaging. 2004;23:330–9.

    PubMed  Google Scholar 

  131. Suzuki K, Li F, Sone S, Doi K. Computer-aided diagnostic scheme for distinction between benign and malignant nodules in thoracic low-dose CT by use of massive training artificial neural network. IEEE Trans Med Imaging. 2005;24:1138–50.

    PubMed  Google Scholar 

  132. Suzuki K, Rockey DC, Dachman AH. CT colonography: advanced computer-aided detection scheme utilizing MTANNs for detection of “missed” polyps in a multicenter clinical trial. Med Phys. 2010;37:12–21.

    PubMed Central  PubMed  Google Scholar 

  133. Suzuki K, Sheu I, Kawaler E, Ferraro F, Rockey DC, Dachman AH. Computer-aided detection (CADe) of flat lesions in CT colonography (CTC) by means of a spinning-tangent technique. Program of RSNA, Chicago; 2010b. p. 319.

    Google Scholar 

  134. Suzuki K, Shiraishi J, Abe H, MacMahon H, Doi K. False-positive reduction in computer-aided diagnostic scheme for detecting nodules in chest radiographs by means of massive training artificial neural network. Acad Radiol. 2005;12:191–201. doi:10.1016/j.acra.2004.11.017. S1076-6332(04)00733-0 [pii].

    PubMed  Google Scholar 

  135. Suzuki K, Shiraishi J, Abe H, MacMahon H, Doi K. False-positive reduction in computer-aided diagnostic scheme for detecting nodules in chest radiographs by means of massive training artificial neural network. Acad Radiol. 2005;12:191–201.

    PubMed  Google Scholar 

  136. Suzuki K, Wang F, Shen D, Yan P. Machine learning in medical imaging (MLMI), Lecture notes in computer science, vol. 7009. Berlin: Springer; 2011. p. 355.

    Google Scholar 

  137. Suzuki K, Wu J, Sheu I. Principal-component massive-training machine-learning regression for false-positive reduction in computer-aided detection of polyps in CT colonography, Lecture notes in computer science, machine learning in medical imaging (MLMI), vol. 6357. Beijing: Springer; 2010. p. 182–9.

    Google Scholar 

  138. Suzuki K, Yan P, Wang F, Shen D. Machine learning in medical imaging. Int J Biomed Imaging. 2012;2012:123727. doi:10.1155/2012/123727.

    PubMed Central  PubMed  Google Scholar 

  139. Suzuki K, Yoshida H, Nappi J, Armato 3rd SG, Dachman AH. Mixture of expert 3D massive-training ANNs for reduction of multiple types of false positives in CAD for detection of polyps in CT colonography. Med Phys. 2008;35:694–703.

    PubMed  Google Scholar 

  140. Suzuki K, Yoshida H, Nappi J, Dachman AH. Massive-training artificial neural network (MTANN) for reduction of false positives in computer-aided detection of polyps: suppression of rectal tubes. Med Phys. 2006;33:3814–24.

    PubMed  Google Scholar 

  141. Suzuki K, Zhang J, Xu J. Massive-training artificial neural network coupled with Laplacian-eigenfunction-based dimensionality reduction for computer-aided detection of polyps in CT colonography. IEEE Trans Med Imaging. 2010;29:1907–17. doi:10.1109/TMI.2010.2053213.

    PubMed Central  PubMed  Google Scholar 

  142. Swensen SJ, Jett JR, Hartman TE, Midthun DE, Sloan JA, Sykes AM, Aughenbaugh GL, Clemens MA. Lung cancer screening with CT: Mayo Clinic experience. Radiology. 2003;226:756–61.

    PubMed  Google Scholar 

  143. Tan M, Deklerck R, Jansen B, Bister M, Cornelis J. A novel computer-aided lung nodule detection system for CT images. Med Phys. 2011;38:5630–45. doi:10.1118/1.3633941.

    PubMed  Google Scholar 

  144. van Ginneken B, ter Haar Romeny BM, Viergever MA. Computer-aided diagnosis in chest radiography: a survey. IEEE Trans Med Imaging. 2001;20:1228–41.

    PubMed  Google Scholar 

  145. Vapnik VN. The nature of statistical learning theory. Berlin: Springer; 1995.

    Google Scholar 

  146. Vapnik VN. Statistical learning theory. New York: Wiley; 1998.

    Google Scholar 

  147. Wang F, Shen D, Yan P, Suzuki K. Machine learning in medical imaging (MLMI), Lecture notes in computer science, vol. 7588. Berlin: Springer; 2012. p. 276.

    Google Scholar 

  148. Wang F, Yan P, Suzuki K, Shen D. Machine learning in medical imaging (MLMI), Lecture notes in computer science, vol. 6357. Berlin: Springer; 2010. p. 192.

    Google Scholar 

  149. Wang S, Yao J, Petrick N, Summers RM. Combining statistical and geometric features for colonic polyp detection in CTC based on multiple kernel learning. Int J Comput Intell Appl. 2010;9:1–15. doi:10.1142/S1469026810002744.

    CAS  PubMed Central  PubMed  Google Scholar 

  150. Wang S, Yao J, Summers RM. Improved classifier for computer-aided polyp detection in CT colonography by nonlinear dimensionality reduction. Med Phys. 2008;35:1377–86.

    PubMed Central  PubMed  Google Scholar 

  151. Wang Z, Liang Z, Li L, Li X, Li B, Anderson J, Harrington D. Reduction of false positives by internal features for polyp detection in CT-based virtual colonoscopy. Med Phys. 2005;32:3602–16.

    PubMed Central  PubMed  Google Scholar 

  152. Way TW, Sahiner B, Chan HP, Hadjiiski L, Cascade PN, Chughtai A, Bogot N, Kazerooni E. Computer-aided diagnosis of pulmonary nodules on CT scans: improvement of classification performance with nodule surface features. Med Phys. 2009;36:3086–98.

    PubMed Central  PubMed  Google Scholar 

  153. Wei D, Nishikawa RM, Doi K. Application of texture analysis and shift-invariant artificial neural network to microcalcification cluster detection. Radiology. 1996;201:696–696.

    Google Scholar 

  154. Wei J, Hagihara Y, Shimizu A, Kobatake H. Optimal image feature set for detecting lung nodules on chest X-ray images. Tokyo: Computer Assisted Radiology and Surgery; 2002. p. 706–11.

    Google Scholar 

  155. Winawer SJ, Fletcher RH, Miller L, Godlee F, Stolar MH, Mulrow CD, Woolf SH, Glick SN, Ganiats TG, Bond JH, Rosen L, Zapka JG, Olsen SJ, Giardiello FM, Sisk JE, Van Antwerp R, Brown-Davis C, Marciniak DA, Mayer RJ. Colorectal cancer screening: clinical guidelines and rationale. Gastroenterology. 1997;112:594–642.

    CAS  PubMed  Google Scholar 

  156. Wu G, Zhang D, Shen D, Yan P, Suzuki K, Wang F. Machine learning in medical imaging (MLMI), Lecture notes in computer science, vol. 8184. Berlin: Springer; 2013. p. 262.

    Google Scholar 

  157. Wu Y, Doi K, Giger ML, Nishikawa RM. Computerized detection of clustered microcalcifications in digital mammograms: applications of artificial neural networks. Med Phys. 1992;19:555–60.

    CAS  PubMed  Google Scholar 

  158. Wu YT, Wei J, Hadjiiski LM, Sahiner B, Zhou C, Ge J, Shi J, Zhang Y, Chan HP. Bilateral analysis based false positive reduction for computer-aided mass detection. Med Phys. 2007;34:3334–44.

    PubMed Central  PubMed  Google Scholar 

  159. Xu JW, Suzuki K. Massive-training support vector regression and Gaussian process for false-positive reduction in computer-aided detection of polyps in CT colonography. Med Phys. 2011;38:1888–902.

    PubMed Central  PubMed  Google Scholar 

  160. Xu JW, Suzuki K. Max-AUC feature selection in computer-aided detection of polyps in CT colonography. IEEE J Biomed Health Info. 2014;18:585–93. doi:10.1109/JBHI.2013.2278023.

    Google Scholar 

  161. Yan P, Suzuki K, Wang F, Shen D. Guest Editors. Special issue on “Machine Learning in Medical Imaging,” Machine Vision and Applications, 2012.

    Google Scholar 

  162. Yao J, Li J, Summers RM. Employing topographical height map in colonic polyp measurement and false positive reduction. Pattern Recognit. 2009;42:1029–40. doi:10.1016/j.patcog.2008.09.034.

    PubMed Central  PubMed  Google Scholar 

  163. Ye X, Lin X, Dehmeshki J, Slabaugh G, Beddoe G. Shape-based computer-aided detection of lung nodules in thoracic CT images. IEEE Trans Biomed Eng. 2009;56:1810–20.

    PubMed  Google Scholar 

  164. Yoshida H, Dachman AH. Computer-aided diagnosis for CT colonography. Semin Ultrasound CT MR. 2004;25:419–31.

    PubMed  Google Scholar 

  165. Yoshida H, Dachman AH. CAD techniques, challenges, and controversies in computed tomographic colonography. Abdom Imaging. 2005;30:26–41.

    CAS  PubMed  Google Scholar 

  166. Yoshida H, Masutani Y, MacEneaney P, Rubin DT, Dachman AH. Computerized detection of colonic polyps at CT colonography on the basis of volumetric features: pilot study. Radiology. 2002;222:327–36.

    PubMed  Google Scholar 

  167. Yoshida H, Nappi J. Three-dimensional computer-aided diagnosis scheme for detection of colonic polyps. IEEE Trans Med Imaging. 2001;20:1261–74.

    CAS  PubMed  Google Scholar 

  168. Yoshida H, Nappi J, MacEneaney P, Rubin DT, Dachman AH. Computer-aided diagnosis scheme for detection of polyps at CT colonography. Radiographics. 2002;22:963–79.

    PubMed  Google Scholar 

  169. Yu SN, Li KY, Huang YK. Detection of microcalcifications in digital mammograms using wavelet filter and Markov random field model. Comput Med Imaging Graph. 2006;30:163–73.

    PubMed  Google Scholar 

  170. Yuan R, Vos PM, Cooperberg PL. Computer-aided detection in screening CT for pulmonary nodules. Am J Roentgenol. 2006;186:1280–7. doi:10.2214/AJR.04.1969.

    Google Scholar 

  171. Zhang W, Doi K, Giger ML, Nishikawa RM, Schmidt RA. An improved shift-invariant artificial neural network for computerized detection of clustered microcalcifications in digital mammograms. Med Phys. 1996;23:595–601.

    CAS  PubMed  Google Scholar 

  172. Zhang W, Doi K, Giger ML, Wu Y, Nishikawa RM, Schmidt RA. Computerized detection of clustered microcalcifications in digital mammograms using a shift-invariant artificial neural network. Med Phys. 1994;21:517–24.

    CAS  PubMed  Google Scholar 

  173. Zhao H, Lo SC, Freedman M, Wang Y. Enhanced lung cancer detection in temporal subtraction chest radiography using directional edge filtering techniques. In: Proceedings of SPIE medical imaging: image processing, vol 4684, San Diego; 2002.

    Google Scholar 

  174. Zhu H, Liang Z, Pickhardt PJ, Barish MA, You J, Fan Y, Lu H, Posniak EJ, Richards RJ, Cohen HL. Increasing computer-aided detection specificity by projection features for CT colonography. Med Phys. 2010;37:1468–81.

    PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work would not have been possible without the help and support of countless people. The author is grateful to all members in the Suzuki laboratory, i.e., postdoctoral scholars, computer scientists, visiting scholars/professors, medical students, graduate/undergraduate students, research technicians, research volunteers, and support staff, in the Department of Radiology at the University of Chicago, for their invaluable assistance in the studies, to colleagues and collaborators for their valuable suggestions. CAD technologies, PML technologies, the bone separation technology, and their source code developed at the University of Chicago have been licensed to companies including R2 Technology (Hologic), Riverain Medical (Riverain Technologies), Deus Technology, Median Technologies, AlgoMedica, Mitsubishi Space Software, General Electric, and Toshiba.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenji Suzuki PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Suzuki, K. (2015). Computerized Detection of Lesions in Diagnostic Images. In: El Naqa, I., Li, R., Murphy, M. (eds) Machine Learning in Radiation Oncology. Springer, Cham. https://doi.org/10.1007/978-3-319-18305-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18305-3_7

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18304-6

  • Online ISBN: 978-3-319-18305-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics