Advertisement

Fundamental Limits of Self-localization for Cooperative Robotic Platforms Using Signals of Opportunity

  • Mei Leng
  • Wee Peng Tay
Chapter
Part of the Studies in Computational Intelligence book series (SCI, volume 604)

Abstract

A fundamental problem in robotic applications is the localization of the robots. We consider the problem of global self-localization for a robotic platform with autonomous robots using signals of opportunity (SOOP). We first give a brief overview of the state-of-the-art in robotic localization using SOOP, and then propose a scheme that requires minimal prior environmental information, no pre-configuration, and only loose synchronization between the robots. To further analyze the potential for the use of SOOP in robotic localization and to investigate the effect of clock asynchronism, we derive an analytical expression for the equivalent Fisher information matrix of the Cramér-Rao lower bound (CRLB). The derivation is based on the received signal waveform, and allows us to analyze the contributions of various factors to the localization accuracy. The CRLB provides a valuable guideline for the design of a robotic platform in which a desired level of localization accuracy is to be achieved. We also analyze the distortions in the time difference of arrival and frequency difference of arrival measurements caused by different clock offsets and skews at the robots. We propose a robust algorithm to estimate robot location and velocity, which mitigates the clock biases. Simulation results suggest that our proposed algorithm approaches the CRLB when clock skews have small standard deviations.

Keywords

Global Navigation Satellite System Global Navigation Satellite System Receive Signal Strength Velocity Estimation Autonomous Robot 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Cox, I.J.: Blanche: Position estimation for an autonomous robot vehicle. In: IEEE/RSJ International Workshop on Intelligent Robots and Systems, Sept 1989, pp. 432–439Google Scholar
  2. 2.
    Win, M.Z., Conti, A., Mazuelas, S., Shen, Y., Gifford, W.M., Dardari, D., Chiani, M.: Network localization and navigation via cooperation. IEEE Commun. Mag. 49(5), 56–62 (2011)CrossRefGoogle Scholar
  3. 3.
    Borenstein, J., Everett, H.R., Feng, L., Wehe, D.: Mobile robot positioning—sensors and techniques. J. Rob. Syst. 14(4), 231–249 (1997)CrossRefGoogle Scholar
  4. 4.
    Borenstein, J., Feng, L., Borenstein, C.J.: Measurement and correction of systematic odometry errors in mobile robots. IEEE Trans. Rob. Autom. 12(6), 869–880 (1996)CrossRefGoogle Scholar
  5. 5.
    Leonard, J., Durrant-Whyte, H.: Mobile robot localization by tracking geometric beacons. IEEE Trans. Rob. Autom. 7(3), 376–382 (1991). JunCrossRefGoogle Scholar
  6. 6.
    Basic Guide to Advanced Navigation, NATO Science and Technology Organization, Feb 2010Google Scholar
  7. 7.
    Priyantha, N.B., Chakraborty, A., Balakrishnan, H.: The cricket location-support system. In: 6th ACM International Conference on Mobile Computing and Networking (ACM MOBICOM), Aug 2000, BostonGoogle Scholar
  8. 8.
    Oman, J.: Crafting a cricket batsman robot, Master Thesis, Lulea University of Technology, 2005Google Scholar
  9. 9.
    Priyantha, N.B.: The cricket indoor location system, Master’s Thesis, Massachusetts Institute of Technology, 2005Google Scholar
  10. 10.
    Harter, A., Hopper, A., Steggles, P., Ward, A., Webster, P.: The anatomy of a context-aware application. Wirel. Netw. 8(2–3), 187–197 (2002)CrossRefzbMATHGoogle Scholar
  11. 11.
    Fukuju, Y., Minami, M., Morikawa, H., Aoyama, T.: DOLPHIN: an autonomous indoor positioning system in ubiquitous computing environment. In: IEEE Workshop on Software Technologies for Future Embedded Systems, May 2003, pp. 53–56Google Scholar
  12. 12.
    Minami, M., Fukuju, Y., Hirasawa, K., Yokoyama, S., Mizumachi, M., Morikawa, H., Aoyama, T.: DOLPHIN: a practical approach for implementing a fully distributed indoor ultrasonic positioning systems. In: Davies, N., Mynatt, E., Siio, I. (eds.) UbiComp 2004: Ubiquitous Computing, ser. Lecture Notes in Computer Science, Vol. 3205, pp. 347–365. Springer, Berlin, Heidelberg (2004)Google Scholar
  13. 13.
    Bahl, P., Padmanabhan, V.N.: RADAR: an in-building RF-based user location and tracking systems. In: IEEE International Conference on Computer Communications (INFOCOMM’00), 2000, pp. 775–784Google Scholar
  14. 14.
    Want, R., Hopper, A., Falcão, V., Gibbons, J.: The active badge location system. ACM Trans. Inf. Syst. 10(1), 91–102 (1992)CrossRefGoogle Scholar
  15. 15.
    Ubisense Real-Time Location Fact Sheet. http://www.ubisense.net. Accessed 2 Mar 2010
  16. 16.
    Merry, L.A., Faragher, R.M., Scheding, S.: Comparison of opportunistic signals for loclisation. In: 7th IFAC Symposium on Intelligent Autonomous Vehicles (2010), vol. 7, no. 1, Lecce, ItalyGoogle Scholar
  17. 17.
    Parker, L.: EnglishCurrent state of the art in distributed autonomous mobile robotics. In: Parker, L., Bekey, G., Barhen, J. (eds.) EnglishDistributed Autonomous Robotic Systems, Vol. 4, pp. 3–12. Springer, Japan (2000)Google Scholar
  18. 18.
    Kurazume, R., Nagata, S., Hirose, S.: Cooperative positioning with multiple robots. In: IEEE International Conference on Robotics and Automation, 1994, vol. 2, pp. 1250–1257Google Scholar
  19. 19.
    Kurazume, R., Hirose, S.: English an experimental study of a cooperative positioning system. Engl. Auton. Robots 8(1), 43–52 (2000)Google Scholar
  20. 20.
    Grabowski, R., Navarro-Serment, L., Paredis, C., Khosla, P.: Heterogeneous teams of modular robots for mapping and exploration. Engl. Auton. Robots 8(3), 293–308 (2000)Google Scholar
  21. 21.
    Rekleitis, I., Dudek, G., Milios, E.: English Multi-robot collaboration for robust exploration. Engl. Ann. Math. Artif. Intell. 31(1–4), 7–40 (2001)Google Scholar
  22. 22.
    Rekleitis, I., Dudek, G., Milios, E.: Probabilistic cooperative localization and mapping in practice. In: IEEE International Conference on Robotics and Automation (ICRA’03), Sept 2003, vol. 2, pp. 1907–1912Google Scholar
  23. 23.
    Fox, D., Burgard, W., Kruppa, H., Thrun, S.: A probabilistic approach to collaborative multi-robot localization. Engl. Auton. Robots 8(3), 325–344 (2000)Google Scholar
  24. 24.
    Caglioti, V., Citterio, A., Fossati, A.: Cooperative, distributed localization in multi-robot systems: a minimum-entropy approach. In: IEEE Workshop on Distributed Intelligent Systems: Collective Intelligence and Its Applications (DIS’06), June 2006, pp. 25–30Google Scholar
  25. 25.
    Roumeliotis, S., Bekey, G.A.: Collective localization: a distributed kalman filter approach to localization of groups of mobile robots. In: IEEE International Conference on Robotics and Automation (ICRA’00), 2000, vol. 3, pp. 2958–2965Google Scholar
  26. 26.
    Roumeliotis, S., Bekey, G.A.: Distributed multirobot localization. IEEE Trans. Robot. Autom. 18(5), 781–795 (2002)Google Scholar
  27. 27.
    Martinelli, A.: Improving the precision on multi robot localization by using a series of filters hierarchically distributed. In: Intelligent Robots and Systems, 2007. IROS 2007. IEEE/RSJ International Conference on, Oct 2007, pp. 1053–1058Google Scholar
  28. 28.
    Howard, A., Matark, M., Sukhatme, G.: Localization for mobile robot teams using maximum likelihood estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, 2002, vol. 1, pp. 434–439Google Scholar
  29. 29.
    Howard, A., Mataric, M., Sukhatme, G.: Localization for mobile robot teams: a distributed MLE approach. In: Siciliano, B., Dario, P. (eds.) English Experimental Robotics VIII, ser. Springer Tracts in Advanced Robotics, Springer, Berlin, Heidelberg, 2003, vol. 5, pp. 146–155Google Scholar
  30. 30.
    Nerurkar, E.D., Roumeliotis, S., Martinelli, A.: Distributed maximum a posteriori estimation for multi-robot cooperative localization. In: IEEE International Conference on Robotics and Automation (ICRA ’09), May 2009, pp. 1402–1409Google Scholar
  31. 31.
    Trawny, N., Roumeliotis, S., Giannakis, G.: Cooperative multi-robot localization under communication constraints. In: IEEE International Conference on Robotics and Automation (ICRA ’09), May 2009, pp. 4394–4400Google Scholar
  32. 32.
    Roumeliotis, S., Rekleitis, I.: Propagation of uncertainty in cooperative multirobot localization: analysis and experimental results. Engl. Auton. Robots 17(1), 41–54 (2004)Google Scholar
  33. 33.
    Mourikis, A., Roumeliotis, S.: Performance analysis of multirobot cooperative localization. IEEE Trans. Robot. 22(4), 666–681 (2006)CrossRefGoogle Scholar
  34. 34.
    Howard, A., Siddiqi, S., Sukhatme, G.S.: An experimental study of localization using wireless ethernet. In: 4th International Conference on Field and Service Robotics, 2003Google Scholar
  35. 35.
    Ladd, A.M., Bekris, K.E., Rudys, A., Kavraki, L.E., Wallach, D.S.: Robotics-based location sensing using wireless ethernet. Wirel. Netw. 11, 189–204 (2005)CrossRefGoogle Scholar
  36. 36.
    Huang, J., Millman, D., Quigley, M., Stavens, D., Thrun, S., Aggarwal, A.: Efficient, generalized indoor WiFi graphSLAM. In: IEEE International Conference on Robotics and Automation (ICRA’11), May 2011, pp. 1038–1043Google Scholar
  37. 37.
    Li, B., Gallagher, T., Dempster, A., Rizos, C.: How feasible is the use of magnetic field alone for indoor positioning? In: International Conference on Indoor Positioning and Indoor Navigation (IPIN’12), Nov 2012, pp. 1–9Google Scholar
  38. 38.
    Jimenez, A., Zampella, F., Seco, F.: Light-matching: a new signal of opportunity for pedestrian indoor navigation. In: International Conference on Indoor Positioning and Indoor Navigation (IPIN’13), Oct 2013, pp. 1–10Google Scholar
  39. 39.
    Schwaighofer, A., Grigoras, M., Tresp, V., Hoffmann, C.: GPPS: a Gaussian process positioning system for cellular networks. In: IN NIPS. MIT Press, 2004Google Scholar
  40. 40.
    Del Peral-Rosado, J., Lopez-Salcedo, J., Seco-Granados, G., Zanier, F., Crisci, M.: Achievable localization accuracy of the positioning reference signal of 3GPP LTE. In: International Conference on Localization and GNSS (ICL-GNSS’12), June 2012, pp. 1–6Google Scholar
  41. 41.
    Dammann, A., Sand, S., Raulefs, R.: Signals of opportunity in mobile radio positioning. In: Proceedings of the 20th European Signal Processing Conference, Aug 2012, pp. 549–553Google Scholar
  42. 42.
    Moghtadaiee, V., Dempster, A., Lim, S.: Indoor localization using FM radio signals: a fingerprinting approach. In: International Conference on Indoor Positioning and Indoor Navigation (IPIN’11), Sept 2011, pp. 1–7Google Scholar
  43. 43.
    Dong, Q., Dargie, W.: Evaluation of the reliability of RSSI for indoor localization. In: International Conference on Wireless Communications in Unusual and Confined Areas (ICWCUCA’12), Aug 2012, pp. 1–6Google Scholar
  44. 44.
    LaMarca, A., Hightower, J., Smith, I., Consolvo, S.: Self-mapping in 802.11 location systems. In: Beigl, M., Intille, S., Rekimoto, J., Tokuda, H. (eds.) UbiComp 2005: Ubiquitous Computing, ser. Lecture Notes in Computer Science, 2005, vol. 3660, pp. 87–104. Springer, Berlin, HeidelbergGoogle Scholar
  45. 45.
    Haeberlen, A., Flannery, E., Ladd, A.M., Rudys, A., Wallach, D.S., Kavraki, L.E.: Practical robust localization over large-scale 802.11 wireless networks. In: Proceedings of the 10th Annual International Conference on Mobile Computing and Networking (MobiCom’04), 2004, pp. 70–84. ACM, New YorkGoogle Scholar
  46. 46.
    Ferris, B., Haehnel, D., Fox, D.: Gaussian processes for signal strength-based location estimation. In: Proceedings of Robotics: Science and Systems, Philadelphia, Aug 2006Google Scholar
  47. 47.
    Ferris, B., Fox, D., Lawrence, N.: WiFi-SLAM using Gaussian process latent variable models. In: Proceedings of the 20th International Joint Conference on Artifical Intelligence, San Francisco, 2007, pp. 2480–2485Google Scholar
  48. 48.
    Lim, H., Kung, L.-C., Hou, J.C., Luo, H.: Zero-configuration indoor localization over IEEE 802.11 wireless infrastructure. Wirel. Netw. 16(2), 405–420 (2010)CrossRefGoogle Scholar
  49. 49.
    Gallagher, T., Li, B., Dempster, A., Rizos, C.: A sector-based campus-wide indoor positioning system. In: International Conference on Indoor Positioning and Indoor Navigation (IPIN’10), Sept 2010, pp. 1–8Google Scholar
  50. 50.
    Li, B., Wang, Y., Lee, H., Dempster, A., Rizos, C.: Method for yielding a database of location fingerprints in WLAN. IEE Proc. Commun. 152(5), 580–586 (2005). OctGoogle Scholar
  51. 51.
    Leng, M., Wu, Y.-C.: Distributed clock synchronization for wireless sensor networks using belief propagation. IEEE Trans. Signal Process. 59(11), 5404–5414 (2011)CrossRefMathSciNetGoogle Scholar
  52. 52.
    Leng, M., Tay, W.P., Quek, T.Q.S.: Cooperative and distributed localization for wireless sensor networks in multipath environments. In: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2012, pp. 3125–3128Google Scholar
  53. 53.
    Leng, M., Tay, W.P., See, C., Razul, S., Win, M.: Modified CRLB for cooperative geolocation of two devices using signals of opportunity. IEEE Trans. Wirel. Commun. 13(7), 3636–3649 (2014)CrossRefGoogle Scholar
  54. 54.
    Sun, M., Ho, K.C.: An asymptotically efficient estimator for TDOA and FDOA positioning of multiple disjoint sources in the presence of sensor location uncertainties. IEEE Trans. Signal Process. 59(7), 3434–3440 (2011)CrossRefMathSciNetGoogle Scholar
  55. 55.
    Musicki, D., Kaune, R., Koch, W.: Mobile emitter geolocation and tracking using TDOA and FDOA measurements. IEEE Trans. Signal Process. 58(3), 1863–1874 (2010)CrossRefMathSciNetGoogle Scholar
  56. 56.
    Wei, H.-W., Peng, R., Wan, Q., Chen, Z.-X., Ye, S.-F.: Multidimensional scaling analysis for passive moving target localization with TDOA and FDOA measurements. IEEE Trans. Signal Process. 58(3), 1677–1688 (2010)CrossRefMathSciNetGoogle Scholar
  57. 57.
    Stein, S.: Algorithms for ambiguity function processing. IEEE Trans. Acoust., Speech, Signal Process. 29(3), 588–599 (1981)CrossRefGoogle Scholar
  58. 58.
    Kay, S.M.: Fundamentals of Statistical Signal Processing: Estimation Theory. Prentice-Hall, Englewood Cliffs (1993)Google Scholar
  59. 59.
    Harry, K.L.B., Van Trees, L. (ed.): Bayesian Bounds for Parameter Estimation and Nonlinear Filtering/Tracking. Wiley-IEEE Press, New York (2007)Google Scholar
  60. 60.
    Moeneclaey, M.: On the true and the modified Cramer-Rao bounds for the estimation of a scalar parameter in the presence of nuisance parameters. IEEE Trans. Commun. 46(11), 1536–1544 (1998)CrossRefGoogle Scholar
  61. 61.
    Gini, F., Reggiannini, R., Mengali, U.: The modified Cramer-Rao bound in vector parameter estimation. IEEE Trans. Commun. 46(1), 52–60 (1998)CrossRefGoogle Scholar
  62. 62.
    Hlawatsch, F., Auger, F. (eds.) Time-Frequency Analysis: Concepts and Methods. Wiley, London (2008)Google Scholar
  63. 63.
    Shen, Y., Win, M.: Fundamental limits of wideband localization—part I: a general framework. IEEE Trans. Inf. Theory 56(10), 4956–4980 (2010)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Nanyang Technological UniversitySingaporeSingapore

Personalised recommendations