Advertisement

ASD: ML Perspective for Individual Performance Evaluation

  • D. López De Luise
  • M. Fernandez Vuelta
  • R. Azor
  • M. Agüero
  • C. Párraga
  • N. López
  • P. Bustamante
  • M. Marquez
  • R. Bielli
  • D. Hisgen
  • R. Fairbain
  • S. Planes
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 356)

Abstract

There are several approaches to interact with ASD patients. Many of them do not relay on vocal abilities because of the wide spectrum of symptoms. But taking data from ML perspective may introduce new sources of information for a better interpretation of patient’s behavior and helps to build new parameters to model individual performance. This paper presents some initial findings in that direction based on the automatic evaluation of real cases as a way to build a parameterized description of patients. Preliminary analysis in patients suggests that the individual performance may be compared with the universe of patients, yet it is possible to elaborate a performance profiling and to model evolution profiles that are present in a predefined universe of patients. The team is currently defining and testing new audio and video protocols to collect additional parameters. From these findings, it is possible to build a parametric reasoning model using MLW.

Keywords

Autism spectrum disorder Asperger Linguistics Reasoning model Computational linguistic Morphosyntactic linguistic wavelets Language processing 

Notes

Acknowledgments

Authors thanks IEEE SIGHT for the initiative and initial sponsorship of the CIIS Lab BIOTECH project, and Universities of Mendoza, San Juan, and Favaloro for providing expertise in visual, acoustic signal processing, and mathematical knowledge. Also thank to CIIS Lab and EAndes foundation, for expert knowledge in Machine Learning, MLW, and image processing. Special thanks to CIEL in Spain and Argentina, and TIPNEA for the permanent collaboration with data, and expert knowledge in ASD.

References

  1. 1.
    Ackerman SA (2010) Effects of acquisition of capacity for sameness on rate learning and generalized body and object limitations. Doctoral dissertation. Columbia University, USAGoogle Scholar
  2. 2.
    American Psychiatric Association, APA (2013). Diagnostic and Statistical Manual of Mental Disorders, 5th Edition: DSM-5. Arlington, USAGoogle Scholar
  3. 3.
    Dador D (2013) Virtual-reality therapy may help with autism. Healthy living. http://abclocal.go.com/kabc/story?section=news/health/your_health&id=9190327
  4. 4.
    Douglas Greer D (2008) The ontogenetic selection of verbal capabilities: contributions of skinner’s verbal behavior theory to a more comprehensive understanding of language. Int J Psychol Psychol Ther 8(3):363–386Google Scholar
  5. 5.
    Editorial: Robots Reading Autistic Kids’ Minds (2011) Discoveries & breakthroughs inside science. http://www.ivanhoe.com/science/story/2011/01/814a.html
  6. 6.
  7. 7.
    Filipek PA, Accardo PJ, Ashwal S (2000) Practice parameter: Screening and diagnosis of autism. Neurology 55:468–479. doi:10.1212Google Scholar
  8. 8.
    Greer RD (‎1997) The comprehensive application of behavior analysis to schooling (CABAS®). Behavior and Social Issues, 7(1)Google Scholar
  9. 9.
    Greer RD (2009) The integration of speaker and listener responses. Psychol Rec 59:449–488Google Scholar
  10. 10.
    Greer RD (‎2011) The ontogenetic selection of verbal capabilities: contributions of skinner’s verbal behavior theory to a more comprehensive understanding of language. Psychol Psychol Ther, 3(8)Google Scholar
  11. 11.
    Greer RD, Longano J (2010) The analysis of verbal behavior. A rose by naming: how we may learn how to do it. Behav Anal Today, 3(2), 120–132Google Scholar
  12. 12.
    Krans B (2013) Small humanoid robot helps autistic kids direct their attention. Healthline News. http://www.healthline.com/health-news/children-small-humanoid-robot-helps-autistic-kids-direct-their-attention-032613
  13. 13.
    López De Luise D (2008) Mejoras en la una estructura complementaria. PhD thesis. Universidad Nacional de La Plata. Argentina. doi: 10.1007/978-90-481-9112-3
  14. 14.
    López De Luise D (2012) Morphosyntactic linguistic wavelets for knowledge management. InTechOpen 8:167–189. doi: 10.5772/35438 Google Scholar
  15. 15.
    López De Luise D, Hisgen D (2013) MLW and bilingualism: case study and definition of basic techniques. IGI global: Advanced Research and Trends in New Technologies, Software, Human-Computer Interaction, and Communicability, 568–600Google Scholar
  16. 16.
    López De Luise D, Hisgen D, Cabrera A, Morales Rins M (2012) Modeling dialogs with linguistic wavelets. Theor Pract Mod Comput 1:11–13Google Scholar
  17. 17.
    López De Luise D, Soffer M (2008) Automatic text processing for spanish texts. Electronics, Robotics and Automotive Mechanics Conference, pp 74–79. doi: 10.1109/CERMA.2008.50
  18. 18.
    Palau M, Valls-Santasusana A, Salvadó B (2010) Aspectos neurolingüísticos en los trastornos del espectro autista [Neurolinguistic aspects in autism spectrum disorder]. Relaciones neuroanatómicas y funcionales. Neurology 50:69–76Google Scholar
  19. 19.
    Pereira Delgado JA (2009) The effects of peer monitoring training. Psychol Rec 59:407–434Google Scholar
  20. 20.
    Pranav D (2013) Meet Russell, a robot that helps autistic children develop social skills. Fast Feed. http://www.fastcompany.com/
  21. 21.
    Salisbury D (2013) Humanoid robot helps train children with autism. Research news @ Vanderbit. http://news.vanderbilt.edu/2013/03/robot-helps-children-with-autism/
  22. 22.
    Scott F, Owen N, Tuncdemir P, Bader N, Fishell G, Tsien R (2013) Oxytocin enhances hippocampal spike transmission by modulating fast-spiking interneurons. Nature. doi:10.1038Google Scholar
  23. 23.
    Sotomayor J (2004) Los problemas de comunicación en niños pequeños con autismo [Communication problems in young children with autism]. Atención temprana 7:78–83Google Scholar
  24. 24.
    Sundberg ML (2007) A brief overview of a behavioral approach to language assessment and intervention for children with autism association for behavior analysis newsletter, 30(3)Google Scholar
  25. 25.
    Lord C, Shulman C, DiLavore P (2004) Regression and word loss in autistic spectrum disorders. J Child Psychol Psychiatry 45(5):936–955CrossRefGoogle Scholar
  26. 26.
    Wittgenstein L (1922) Tractatus logico-philosophicus. Harcourt, Brace, New YorkMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • D. López De Luise
    • 1
  • M. Fernandez Vuelta
    • 2
  • R. Azor
    • 3
  • M. Agüero
    • 1
  • C. Párraga
    • 3
  • N. López
    • 4
  • P. Bustamante
    • 4
  • M. Marquez
    • 5
  • R. Bielli
    • 5
  • D. Hisgen
    • 1
  • R. Fairbain
    • 6
  • S. Planes
    • 1
  1. 1.CI2S LabBuenos AiresArgentina
  2. 2.Centro CIEL, Calle Ecce HomoOviedoSpain
  3. 3.DICYTyV Eng. Dep.—Universidad de MendozaMendozaArgentina
  4. 4.Gab. de Tecnología Médica Eng. Dep.—UNSJSan JuanArgentina
  5. 5.EAndes FoundationSan Rafael MendozaArgentina
  6. 6.Dep. de Ingeniería Traslacional (FICEyN), Universidad FavaloroBuenos AiresArgentina

Personalised recommendations