Skip to main content

Self-assembled 1D Semiconductors: Liquid Crystalline Columnar Phase

  • Chapter
  • First Online:
Anisotropic Nanomaterials

Part of the book series: NanoScience and Technology ((NANO))

Abstract

Organic semiconducting materials have emerged as potential alternative to inorganic silicon based semiconductors for the production of low-cost, flexible and light weight plastic electronic devices. When compared with crystalline and polymeric structures, liquid crystalline (LC) ordering in organic semiconductors favors their self-assembly into large area monodomain thin-film structures with carrier mobilities in the range from 10−3 cm2 V−1 s−1 to 10−1 cm2 V−1 s−1. The LC nature enables a self-healing process of structural defects such as grain boundaries within the material which is especially exploited during post production thermal treatment for device improvement. The main objective of this chapter is to review the research progress in the field of columnar LC semiconductors with the emphasis on molecular structure—charge transport property relationship, control of alignment, and their prospective applications in molecular electronics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Q. Li (ed.), Self-Organized Organic Semiconductors: From Materials to Device Applications (Wiely, Hoboken, 2011)

    Google Scholar 

  2. S.R. Forrest, The path to ubiquitous and low-cost organic electronic appliances on plastic. Nature 428, 911–918 (2004)

    ADS  Google Scholar 

  3. H. Klauk, (ed.), Organic Electronics: Materials, Manufacturing and Applications (Wiley-VCH, Weinheim, 2006)

    Google Scholar 

  4. J. Roncali, P. Leriche, A. Cravino, From one-to three-dimensional organic semiconductors: In search of the organic silicon. Adv. Mater. 19, 2045–2060 (2007)

    Google Scholar 

  5. O.D. Jurchescu, J. Baas, T.T.M. Palstra, Effect of impurities on the mobility of single crystal pentacene. Appl. Phys. Lett. 84, 3061–3063 (2004)

    ADS  Google Scholar 

  6. V. Podzorov, S.E. Sysoev, E. Loginova, V.M. Pudalov, M.E. Gershenson, Single-crystal organic field effect transistors with the hole mobility ~8 cm2/Vs. Appl. Phys. Lett. 83, 3504–3506 (2003)

    ADS  Google Scholar 

  7. G. Hadziioannou, G. G. Malliavas (eds.), Semiconducting Polymers: Chemistry, Physics and Engineering (Wiley-VCH, Weinheim, 2007)

    Google Scholar 

  8. H. Pan, Y. Li, Y. Wu, P. Li, B.S. Ong, S. Zhu, G. Xu, Low-temperature, solution-processed, high-mobility polymer semiconductors for thin-film transistors. J. Am. Chem. Soc. 129, 4112–4113 (2007)

    Google Scholar 

  9. H. Yan, Z. Chen, Y. Zheng, C. Newman, J.R. Quinn, F. Dotz, M. Kastler, A. Facchetti, A high-mobility electron-transporting polymer for printed transistors. Nature 457, 679–686 (2009)

    ADS  Google Scholar 

  10. J. Hanna, A. Ohno, H. Iino, Charge carrier transport in liquid crystals. Thin Solid Films 554, 58–63 (2014)

    ADS  Google Scholar 

  11. D. Demus, J. Goodby, G.W. Gray, H.-W. Spiess, V. Vill, (eds.), Handbook of Liquid Crystals, vol. 2A (Wiley-VCH, Weinheim, 1998)

    Google Scholar 

  12. P.J. Collings, M. Hird (eds.), Introduction to Liquid Crystals: Chemistry and Physics, (Taylor & Francis Ltd, London, 1997)

    Google Scholar 

  13. Q. Li (ed.), Nanoscience with Liquid Crystals: From Self-Organized Nanostructures to Applications (Springer, Heidelberg, 2014)

    Google Scholar 

  14. Q. Li (ed.), Liquid Crystals Beyond Displays: Chemistry, Physics, and Applications (Wiley, Hoboken, 2012)

    Google Scholar 

  15. S. Chandrasekhar, B.K. Sadashiva, K.A. Suresh, Liquid crystals of disc-like molecules. Pramana 9, 471–480 (1977)

    ADS  Google Scholar 

  16. S. Kumar, Self-organization of disc-like molecules: chemical aspects. Chem. Soc. Rev. 35, 83–109 (2006)

    Google Scholar 

  17. K. Kawata, Orientation control and fixation of discotic liquid crystal. Chem. Record. 2, 59–80 (2002)

    MathSciNet  Google Scholar 

  18. T. Kato, T. Yasuda, Y. Kamikawa, M. Yoshio, Self-assembly of functional columnar liquid crystals. Chem. Commun. 2009, 729–739 (2009)

    Google Scholar 

  19. D. Adam, F. Closs, T. Frey, D. Funhoff, D. Haarer, H. Ringsdorf, P. Schuhmacher, K. Siemensmeyer, Transient photoconductivity in a discotic liquid crystal. Phys. Rev. Lett. 70, 457–460 (1993)

    ADS  Google Scholar 

  20. M. Funahashi, J. Hana, Fast hole transport in a new calamitic liquid crystal of 2-(4-heptyloxyphenyl)-6-dodecylthiobenzothiazole. Phys. Rev. Lett. 78, 2184–2187 (1997)

    ADS  Google Scholar 

  21. K.L. Woon, M.P. Aldred, P. Vlachos, G.H. Mehl, T. Stirner, S.M. Kelly, M. O’Neill, Electronic charge transport in extended nematic liquid crystals. Chem. Mater. 18, 2311–2317 (2006)

    Google Scholar 

  22. M. Funahashi, N. Tamaoki, Electronic conduction in the chiral nematic phase of an oligothiophene derivative. ChemPhysChem 7, 1193–1197 (2006)

    Google Scholar 

  23. M.P. Aldred, A.E.A. Contoret, S.R. Farrar, S.M. Kelly, D. Mathieson, M. O’Neill, W.C. Tsoi, P. Vlachos, A full-color electroluminescent device and patterned photoalignment using light-emitting liquid crystals. Adv. Mater. 17, 1368–1372 (2005)

    Google Scholar 

  24. V. Lemaur, D.A. da Silva, V. Coropceanu, M. Lehmann, Y. Geerts, J. Piris, M.G. Debije, A.M. van de Craats, K. Senthilkumar, L.D.A. Siebbles, J.M. Warman, J.L. Bredas, J. Cornil, Charge transport properties in discotic liquid crystals: a quantum-chemical insight into structure–property relationships. J. Amer. Chem. Soc. 126, 3271–3279 (2004)

    Google Scholar 

  25. L.J. Lever, R.W. Kelsall, R.J. Bushby, Band transport for discotic liquid crystals. Phys. Rev. B. 72, 035130 (2005)

    ADS  Google Scholar 

  26. W. Pisula, M. Zorn, J.Y. Chang, K. Mullen, R. Zental, Liquid crystalline ordering and charge transport in semiconducting materials. Macromol. Rapid Commun. 30, 1179–1202 (2009)

    Google Scholar 

  27. A.M. Van de Craats, J.M. Warman, A. Fechtenkötter, J.D. Brand, M.A. Harbison, K. Müllen, Record charge carrier mobility in a room-temperature discotic liquid crystalline derivative of hexabenzocoronene. Adv. Mater. 11, 1469–1472 (1999)

    Google Scholar 

  28. J. Piris, W. Pisula, J.M. Warman, Anisotropy of the optical absorption and photoconductivity of a zone-cast film of a discotic hexabenzocoronene. Synth. Met. 147, 85–89 (2004)

    Google Scholar 

  29. Y. Shimizu, K. Oikawa, K. Nakayama, D. Guillon, Mesophase semiconductors in field effect transistors. J. Mater. Chem. 17, 4223–4229 (2007)

    Google Scholar 

  30. B. Domercq, J. Yu, B.R. Kaafarani, T. Kondo, S. Yoo, J.N. Haddock, S. Barlow, S.R. Marder, B. Kippelen, A comparative study of charge mobility measurements in a diamine and in a hexaazatrinaphthylene using different techniques. Mol. Cryst. Liq. Cryst. 481, 80–93 (2008)

    Google Scholar 

  31. A.M. Van de Craats, J.M. Warman, M.P. De Haas, D. Adam, J. Simmerer, D. Haarer, P. Schuhmacher, The mobility of charge carriers in all four phases of the columnar discotic material hexakis (hexylthio) triphenylene: Combined TOF and PR-TRMC results. Adv. Mater. 8, 823–826 (1996)

    Google Scholar 

  32. A.M. Van de Craats, J.M. Warman, The core-size effect on the mobility of charge in discotic liquid crystalline materials. Adv. Mater. 13, 130–133 (2001)

    Google Scholar 

  33. C. Piechocki, J. Simon, A. Skoulios, D. Guillon, P. Weber, Discotic mesophases obtained from substituted metallophthalocyanines. Toward liquid crystalline onedimensional conductors. J. Am. Chem. Soc. 104, 5245–5247 (1982)

    Google Scholar 

  34. N. Boden, R.J. Bushby, J. Clements, M.V. Jesudason, P.F. Knowles, G. Williams, One-dimensional electronic conductivity in discotic liquid crystals. Chem. Phys. Lett. 152, 94–99 (1988)

    ADS  Google Scholar 

  35. N. Boden, R. Borner, D.R. Brown, R.J. Bushby, J. Clements, ESR studies of radical cations produced on doping discotic liquid crystals with lewis acids. Liq. Cryst. 11, 325–334 (1992)

    Google Scholar 

  36. P.G. Schoten, J.M. Gorman, M.P. deHaas, M.A. Fox, H.L. Pan, Charge migration in supramolecular stacks of peripherally substituted porphyrins. Nature 353, 736–737 (1991)

    ADS  Google Scholar 

  37. P.G. Schoten, J.M. Gorman, M.P. deHaas, J.F. van der Pol, J.W. Zwikker, Radiation-induced conductivity in polymerized and nonpolymerized columnar aggregates of phthalocyanine. J. Am. Chem. Soc. 114, 9028–9034 (1992)

    Google Scholar 

  38. J. Simmerer, B. Glusen, W. Paulus, A. Kettner, P. Schuhmacher, D. Adam, K.-H. Etzbach, K. Siemensmeyer, J.H. Wendorff, H. Ringsdorf, D. Haarer, Transientphotoconductivity in a discotic hexagonal plastic crystal. Adv. Mater. 8, 815–819 (1996)

    Google Scholar 

  39. D. Adam, P. Schumacher, J. Simmerer, L. Haussling, K. Siemensmeyer, K.H. Etzbachi, H. Ringsdorf, D. Haarer, Fast photoconduction in the highly ordered columnar phase of a discotic liquid crystal. Nature 371, 141–143 (1994)

    ADS  Google Scholar 

  40. H. Bengs, F. Closs, T. Frey, D. Funhoff, H. Ringsdorf, K. Siemensmeyer, Highly photoconductive discotic liquid crystals: Structure–property relations in the homologous series of hexa-alkoxytriphenylenes. Liq. Cryst. 15, 565–574 (1993)

    Google Scholar 

  41. J.A. Rego, S. Kumar, H. Ringsdorf, Synthesis and characterization of fluorescent, low-symmetry triphenylene discotic liquid crystals: Tailoring of mesomorphic and optical properties. Chem. Mater. 8, 1402–1409 (1996)

    Google Scholar 

  42. A. Kettner, J.H. Wendorff, Modifications of the mesophase formation of discotic triphenylene compounds by substituents. Liq. Cryst. 26, 483–487 (1999)

    Google Scholar 

  43. J.M. Warman, A.M. van De Craats, Charge mobility in discotic materials studied by PR-TRMC. Mol. Cryst. Liq. Cryst. 396, 41–72 (2003)

    Google Scholar 

  44. M.A. Alam, J. Motoyanagi, Y. Yamamoto, T. Fukushima, J. Kim, K. Kato, M. Takata, A. Saeki, S. Seki, S. Tagawa, T. Aida, “Bicontinuous cubic” liquid crystalline materials from discotic molecules: A special effect of paraffinic side chains with ionic liquid pendants. J. Am. Chem. Soc. 131, 17722–17723 (2009)

    Google Scholar 

  45. H. Iino, J. Hanna, C. Jager, D. Haarer, Fast electron transport in discotic columnar phase of triphenylene derivative, hexabutyloxytriphenylene. Mol. Cryst. Liq. Cryst. 436, 217–224 (2005)

    Google Scholar 

  46. H. Iino, Y. Takayashiki, J. Hanna, R.J. Bushby, D. Haarer, High electronmobility of 0.1 cm−1 V−1 s−1 in the highly ordered columnar phase of exahexylthiotriphenylene. Appl. Phys. Lett. 87, 192105 (2005)

    ADS  Google Scholar 

  47. B.R. Wegewijs, L.D.A. Siebbeles, N. Boden, R.J. Bushby, B. Movaghar, O.R. Lozman, Q. Liu, A. Pecchia, L.A. Mason, Charge-carrier mobilities in binary mixtures of discotic triphenylene derivatives as a function of temperature. Phys. Rev. B Condens. Matter Mater. Phys. 65, 245112/1–245112/8 (2002)

    ADS  Google Scholar 

  48. I. Paraschiv, K. de Lange, M. Giesbers, B. van Lagen, F.C. Grozema, R.D. Abellon, L.D.A. Siebbeles, E.J.R. Sudholter, H. Zuilhof, A.T.M. Marcelis, Hydrogen-bond stabilized columnar discotic benzenetrisamides with pendant triphenylene groups. J. Mater. Chem. 18, 5475–5481 (2008)

    Google Scholar 

  49. N. Mizoshita, H. Monobe, M. Inoue, M. Ukon, T. Watanabe, Y. Shimizu, K. Hanabusa, T. Kato, The positive effect on hole transport behaviour in anisotropic gels consisting of discotic liquid crystals and hydrogen-bonded fibres. Chem. Commun. 2002, 428–429 (2002)

    Google Scholar 

  50. S. Kumar, S.K. Pal, P.S. Kumar, V. Lakshminarayanan, Novel conducting nanocomposites: synthesis of triphenylene-covered gold nanoparticles and their insertion into a columnar matrix. Soft Matter 3, 896–900 (2007)

    ADS  Google Scholar 

  51. L.A. Holt, R.J. Bushby, S.D. Evans, A. Burgess, G. Seeley, A 106-fold enhancement in the conductivity of a discotic liquid crystal doped with only 1 % (w/w) gold nanoparticles. J. Appl. Phys. 103, 063712 (2008)

    ADS  Google Scholar 

  52. S. Kumar, L.K. Sagar, CdSe quantum dots in a columnar matrix. Chem. Commun. 47, 12182–12184 (2011)

    Google Scholar 

  53. J. Wu, W. Pisula, K. Mullen, Graphenes as potential material for electronics. Chem. Rev. 107, 718–747 (2007)

    Google Scholar 

  54. M.G. Debije, J. Piris, M.P. de Haas, J.M. Warman, Z. Tomovic, C.D. Simpson, M.D. Watson, K. Mullen, The optical and charge transport properties of discotic materials with large aromatic hydrocarbon cores. J. Am. Chem. Soc. 126, 4641–4645 (2004)

    Google Scholar 

  55. X. Feng, M. Liu, W. Pisula, M. Takase, J. Li, K. Mullen, Supramolecular organization and photovoltaics of triangle-shaped discotic graphenes with swallowtailed alkyl substituents. Adv. Mater. 20, 2684–2689 (2008)

    Google Scholar 

  56. S. Xiao, M. Myers, Q. Miao, S. Sanaur, K. Pang, M.L. Steigerwald, C. Nuckolls, Molecular wires from contorted aromatic compounds. Angew. Chem. Int. Ed. 44, 7390–7394 (2005)

    Google Scholar 

  57. Y. Yamamoto, G. Zhang, W. Jin, T. Fukushima, N. Ishii, A. Saeki, S. Seki, S. Tagawa, T. Minari, K. Tsukagoshi, T. Aida, Ambipolar-transporting coaxial nanotubes with a tailored molecular graphene–fullerene heterojunction. PNAS 106, 21051–21056 (2009)

    ADS  Google Scholar 

  58. J.W. Goodby, P.S. Robinson, B.-K. Teo, P.E. Cladi, The discotic phase of uroporphyrin octa-N-dodecyl ester. Mol. Cryst. Liq. Cryst. 56, 303–309 (1980)

    Google Scholar 

  59. H. Fujikake, T. Murashige, M. Sugibayashi, K. Ohta, Time-of-flight analysis of charge mobility in a Cu-phthalocyanine-based discotic liquid crystal semiconductor. Appl. Phys. Lett. 85, 3474 (2004)

    ADS  Google Scholar 

  60. H. Iino, J. Hanna, R.J. Bushby, B. Movaghar, B.J. Whitaker, M.J. Cook, Very high time-of-flight mobility in the columnar phases of a discotic liquid crystal. Appl. Phys. Lett. 87, 132102 (2005)

    ADS  Google Scholar 

  61. K. Ban, K. Nishizawa, K. Ohta, A.M. Craats, J.M. Warman, I. Yamamoto, H. Shirai, Discotic liquid crystals of transition metal complexes 29: mesomorphism and charge transport properties of alkylthio-substituted phthalocyanine rare-earth metal sandwich complexes. J. Mater. Chem. 11, 321–331 (2001)

    Google Scholar 

  62. S.W. Kang, Q. Li, B.D. Chapman, R. Pindak, J.O. Cross, L. Li, M. Nakata, S. Kumar, Microfocus x-ray diffraction study of the columnar phase of porphyrinbased mesogens. Chem. Mater. 19, 5657–5663 (2007)

    Google Scholar 

  63. L. Li, S.W. Kang, J. Harden, Q. Sun, X. Zhou, L. Dai, A. Jakli, S. Kumar, Q. Li, Nature-inspired light-harvesting liquid crystalline porphyrins for organic photovoltaics. Liq. Cryst. 35, 233–239 (2008)

    Google Scholar 

  64. Q. Sun, L. Dai, X. Zhou, L. Li, Q. Li, Bilayer-and bulk-heterojunction solar cells using liquid crystalline porphyrins as donors by solution processing. Appl. Phys. Lett. 91, 253505 (2007)

    ADS  Google Scholar 

  65. T. Sakurai, K. Tashiro, Y. Honsho, A. Saeki, S. Seki, A. Osuka, A. Muranaka, M. Uchiyama, J. Kim, S. Ha, K. Kato, M. Takata, T. Aida, Electron- or hole-transporting nature selected by side-chain-directed π-stacking geometry: Liquid crystalline fused metalloporphyrin dimers. J. Am. Chem. Soc. 133, 6537–6540 (2011)

    Google Scholar 

  66. N. Boden, R.C. Borner, R.J. Bushby, J. Clements, First observation of an n-doped quasi-one-dimensional electronically-conducting discotic liquid crystal. J. Am. Chem. Soc. 116, 10807–10808 (1994)

    Google Scholar 

  67. N. Boden, R.J. Bushby, K. Donovan, Q. Liu, Z. Lu, T. Kreouzis, A. Wood, 2,3,7,8,12,13-Hexakis [2-(2-methoxyethoxy) ethoxy] tricycloquinazoline: a discogen which allows enhanced levels of n-doping. Liq. Cryst. 28, 1739–1748 (2001)

    Google Scholar 

  68. K. Pieterse, P.A. van Hal, R. Kleppinger, J.A.J.M. Vekemans, R.A.J. Janssen, E.W. Meijer, An electron-deficient discotic liquid-crystalline material. Chem. Mater. 13, 2675–2679 (2001)

    Google Scholar 

  69. R.I. Gearba, M. Lahmann, J. Levin, D.A. Ivanov, M.H.J. Koch, J. Barbera, M.G. Debije, J. Piris, Y.H. Geerts, Tailoring discotic mesophases: Columnar order enforced with hydrogen bonds. Adv. Mater. 15, 1614–1618 (2003)

    Google Scholar 

  70. A. Demenev, S.H. Eichhorn, T. Taerum, D.F. Perepichka, S. Patwardhan, F.C. Grozeme, L.D.A. Siebbeles, R. Klenkler, Quasi temperature independent electron mobility in hexagonal columnar mesophases of an H-bonded benzotristhiophene derivative. Chem. Mater. 22, 1420–1428 (2010)

    Google Scholar 

  71. M. Lehmann, G. Kestemont, R. Gomez Aspe, C. Buess-Herman, M.H.J. Koch, M.G. Debije, J. Piris, M.P. de Haas, J.M. Warman, M.D. Watson, High chargecarrier mobility in p-deficient discotic mesogens: Design and structure-property relationship. Chem. Eur. J. 11, 3349–3362 (2005)

    Google Scholar 

  72. Y.-D. Zhang, K.G. Jespersen, M. Kempe, J.A. Kornfield, S. Barlow, B. Kippelen, S.R. Marder, Columnar discotic liquid-crystalline oxadiazoles as electron-transport materials. Langmuir 19, 6534–6536 (2003)

    Google Scholar 

  73. B. Tylleman, G. Gbabode, C. Amato, C. Buess-Herman, V. Lemaur, J. Cornil, R. Go’mez Aspe, Y.H. Geerts, S. Sergeyev, Metal-free phthalocyanines bearing eight alkylsulfonyl substituents: Design, synthesis, electronic structure, and mesomorphism of new electron-deficient mesogens. Chem. Mater. 21, 2789–2797 (2009)

    Google Scholar 

  74. C.W. Struijk, A.B. Sieval, J.E.J. Dakhorst, M. van Dijk, P. Kimkes, R.B.M. Koehorst, H. Donker, T.J. Schaafsma, S.J. Picken, A.M. van de Craats, Liquid crystalline perylene diimides: Architecture and charge carrier mobilities. J. Am. Chem. Soc. 122, 11057–11066 (2000)

    Google Scholar 

  75. J.Y. Kim, I.J. Chung, Y.C. Kim, J.W. Yu, Mobility of electrons and holes in a liquid crystalline perylene diimide thin film with time of flight technique. Chem. Phys. Lett. 398, 367–371 (2004)

    ADS  Google Scholar 

  76. P.R.L. Malenfant, C.D. Dimitrakopoulos, J.D. Gelorme, L.L. Kosbar, T.O. Graham, A. Curioni, W. Andreoni, N-type organic thin-film transistor with high field-effect mobility based on a N, N -dialkyl-3,4,9,10-perylene tetracarboxylic diimide derivative. Appl. Phys. Lett. 80, 2517 (2002)

    ADS  Google Scholar 

  77. Z. An, J. Yu, S.C. Jones, S. Barlow, S. Yoo, B. Domercq, P. Prins, L.D.A. Siebbeles, B. Kippelen, S.R. Marder, High electron mobility in room-temperature discotic liquid-crystalline perylene diimides. Adv. Mater. 17, 2580–2583 (2005)

    Google Scholar 

  78. Z. Chen, M.G. Debije, T. Debaerdemaeker, P. Osswald, F. Wuerthner, Tetrachloro-substituted perylene bisimide dyes as promising n-type organic semiconductors: studies on structural, electrochemical and charge transport properties. Chem. Phys. Chem. 5, 137–139 (2004)

    Google Scholar 

  79. M. Funahashi, A. Sonoda, High electron mobility in a columnar phase of liquid-crystalline perylenetetracarboxylic bisimide bearing oligosiloxane chains. J. Mater. Chem. 22, 25190–25197 (2012)

    Google Scholar 

  80. I. Seguy, P. Destruel, H. Bock, An all-columnar bilayer light-emitting diode. Synth. Met. 111, 15–18 (2000)

    Google Scholar 

  81. S. Alibert-Fouet, S. Dardel, H. Bock, M. Oukachmih, S. Archambeau, I. Seguy, P. Jolinat, P. Destruel, Electroluminescent diodes from complementary discotic benzoperylenes. Chem. Phys. Chem. 4, 983–985 (2003)

    Google Scholar 

  82. F. Nolde, W. Pisula, S. Muller, C. Kohl, K. Mullen, Synthesis and selforganization of core-extended perylene tetracarboxdiimides with branched alkyl substituents. Chem. Mater. 18, 3715–3725 (2006)

    Google Scholar 

  83. H.N. Tsao, W. Pisula, Z. Liu, W. Osikowicz, W.R. Salaneck, K. Müllen, From ambi-to unipolar behavior in discotic dye field-effect transistors. Adv. Mater. 20, 2715–2719 (2008)

    Google Scholar 

  84. U. Rohr, C. Kohl, K. Müllen, A. Craats, J. Warman, Liquid crystalline coronene derivatives. J. Mater. Chem. 11, 1789–1799 (2001)

    Google Scholar 

  85. K. Hirota, K. Tajima, K. Hashimoto, Physicochemical study of discotic liquid crystal decacyclene derivative and utilization in polymer photovoltaic devices. Synth. Met. 157, 290–296 (2007)

    Google Scholar 

  86. H.K. Bisoyi, S. Kumar, Room-temperature electron-deficient discotic liquid crystals: facile synthesis and mesophase characterization. New J. Chem. 32, 1974–1980 (2008)

    Google Scholar 

  87. S.K. Gupta, V.A. Raghunathan, S. Kumar, Microwave-assisted facile synthesis of discotic liquid crystalline symmetrical donor–acceptor–donor triads. New J. Chem. 33, 112–118 (2009)

    Google Scholar 

  88. J.C. Bunning, K.J. Donovan, R.J. Bushby, O.R. Lozman, Z. Lu, Electron photogeneration in a triblock co-polymer discotic liquid crystal. Chem. Phys. 312, 145–150 (2005)

    ADS  Google Scholar 

  89. A. Hayer, V. de Halleux, A. Kohler, A. El-Garoughy, E.W. Meijer, J. Barbera, J. Tant, J. Levin, M. Lehmann, J. Gierschner, J. Cornil, Y.H. Geerts, Highly fluorescent crystalline and liquid crystalline columnar phases of pyrene-based structures. J. Phys. Chem. B 110, 7653–7659 (2006)

    Google Scholar 

  90. M.J. Sienkowska, H. Monobe, P. Kaszynski, Y. Shimizu, Photoconductivity of liquid crystalline derivatives of pyrene and carbazole. J. Mater. Chem. 17, 1392–1398 (2007)

    Google Scholar 

  91. T. Yasuda, T. Shimizu, F. Liu, G. Ungar, T. Kato, Electro-functional octupolar π-conjugated columnar liquid crystals. J. Am. Chem. Soc. 133, 13437–13444 (2011)

    Google Scholar 

  92. H. Hayashi, W. Nihashi, T. Umeyama, Y. Matano, S. Seki, Y. Shimizu, H. Imahori, Segregated donor–acceptor columns in liquid crystals that exhibit highly efficient ambipolar charge transport. J. Am. Chem. Soc. 133, 10736–10739 (2011)

    Google Scholar 

  93. L.F. Dössel, V. Kamm, I.A. Howard, F. Laquai, W. Pisula, X. Feng, C. Li, M. Takase, T. Kudernac, S. De Feyter, K. Müllen, Synthesis and controlled self-assembly of covalently linked hexaperi-hexabenzocoronene/perylene diimide dyads as models to study fundamental energy and electron transfer processes. J. Am. Chem. Soc. 134, 5876–5886 (2012)

    Google Scholar 

  94. M. Talarico, R. Termine, E.M. Garcia-Frutos, A. Omenat, J.L. Serrano, B. Gomez-Lor, A. Golemme, New electrode-friendly triindole columnar phases with high hole mobility. Chem. Mater. 20, 6589–6591 (2008)

    Google Scholar 

  95. B. Zhao, B. Liu, R.Q. Png, K. Zhang, K.A. Lim, J. Luo, J. Shao, P.K.H. Ho, C. Chi, J. Wu, New discotic mesogens based on triphenyl-fused triazatruxenes: Synthesis, physical properties, and self-assembly. Chem. Mater. 22, 435–449 (2010)

    Google Scholar 

  96. D. Miyajima, K. Tashiro, F. Araoka, H. Takezoe, J. Kim, K. Kato, M. Takata, T. Aida, Liquid crystalline corannulene responsive to electric field. J. Am. Chem. Soc. 131, 44–45 (2009)

    Google Scholar 

  97. S.S. Besbes, E. Grelet, H. Bock, Soluble and liquid-crystalline ovalenes. Angew. Chem. Int. Ed. 45, 1783–1786 (2006)

    Google Scholar 

  98. C.V. Yelamaggad, A.S. Achalkumar, D.S. Shankar Rao, S.K. Prasad. Self-assembly of C 3h and C s symmetric keto-enamine forms of tris(Nsalicylideneanilines) into columnar phases: A new family of discotic liquid crystals. J. Am. Chem. Soc. 126, 6506–6507 (2004)

    Google Scholar 

  99. C. Lavigueur, E.J. Foster, V.E. Williams, Self-assembly of discotic mesogens in solution and in liquid crystalline phases: effects of substituent position and hydrogen bonding. J. Am. Chem. Soc. 130, 11791–11800 (2008)

    Google Scholar 

  100. E.M. García-Frutos, U.K. Pandey, R. Termine, A. Omenat, J. Barberá, J.L. Serrano, A. Golemme, B. Gómez-Lor, High charge mobility in discotic liquid-crystalline triindoles: just a core business? Angew. Chem. 50, 7399–7402 (2011)

    Google Scholar 

  101. S.H. Eichhorn, A. Adavelli, H.S. Li, N. Fox, Alignment of discotic liquid crystals. Mol. Cryst. Liq. Cryst. 397, 47–58 (2003)

    Google Scholar 

  102. S. Sergeyev, W. Pisula, Y.H. Geerts, Discotic liquid crystals: A new generation of organic semiconductors. Chem. Soc. Rev. 36, 1902–1929 (2007)

    Google Scholar 

  103. J.K. Vij, A. Kocot, T.S. Perova, Order parameter, alignment and anchoring transition in discotic liquid crystals. Mol. Cryst. Liq. Cryst. 397, 231–244 (2003)

    Google Scholar 

  104. N. Terasawa, H. Monobe, K. Kiyohara, Y. Shimizu, Strong tendency towards homeotropic alignment in a hexagonal columnar mesophase of fluoroalkylated triphenylenes. Chem. Commun. 2003, 1678–1679 (2003)

    Google Scholar 

  105. W. Pisula, Z. Tomovic, B. El Hamaoui, M.D. Watson, T. Pakula, K. Mullen, Control of the homeotropic order of discotic hexa-peri -hexabezocoronenes. Adv. Funct. Mater. 15, 893–904 (2005)

    Google Scholar 

  106. X. Zhou, S.W. Kang, S. Kumar, Q. Li, Self-assembly of discotic liquid crystal porphyrin into more controllable ordered nanostructure mediated by fluorophobic effect. Liq. Cryst. 36, 269–274 (2009)

    Google Scholar 

  107. N. Kumaran, P.A. Veneman, B.A. Minch, A. Mudalige, J.E. Pemberton, D.F. O’Brien, N.R. Armstrong, Self-organized thin films of hydrogen-bonded phthalocyanines: characterization of structure and electrical properties on nanometer length scales. Chem. Mater. 22, 2491–2501 (2010)

    Google Scholar 

  108. S. Zimmermann, J.H. Wendorff, C. Weder, Uniaxial orientation of columnar discotic liquid crystals. Chem. Mater. 14, 2218–2223 (2002)

    Google Scholar 

  109. O. Bunk, M.M. Nielsen, T.I. Solling, A.M. van de Craats, N. Stutzmann, Induced alignment of a solution-cast discotic hexabenzocoronene derivative for electronic devices investigated by surface X-ray diffraction. J. Am. Chem. Soc. 125, 2252–2258 (2003)

    Google Scholar 

  110. R.I. Gearba, D.V. Anokhin, A.I. Bondar, W. Bras, M. Jahr, M. Lehmann, D.A. Ivanov, Homeotropic alignment of columnar liquid crystals in open films by means of surface nanopatterning. Adv. Mater. 19, 815–820 (2007)

    Google Scholar 

  111. E. Charlet, E. Grelet, Anisotropic light absorption, refractive indices, and orientational order parameter of unidirectionally aligned columnar liquid crystal films. Phys. Rev. E: Stat. Nonlinear, Soft Matter Phys. 78, 041707/1–041707/8 (2008)

    ADS  Google Scholar 

  112. S.D. Xu, Q.D. Zeng, J. Lu, C. Wang, L.J. Wan, C.L. Bai, The two-dimensional self-assembled n-alkoxy-substituted stilbenoid compounds and triphenylenes studied by scanning tunneling microscopy. Surf. Sci. 538, L451–L459 (2003)

    ADS  Google Scholar 

  113. M. Palma, J. Levin, V. Lemaur, A. Liscio, V. Palermo, J. Cornil, Y. Geerts, M. Lehmann, P. Samori, Self-organization and nanoscale electronic properties of azatriphenylene-based architectures: a scanning probe microscopy study. Adv. Mater. 18, 3313–3317 (2006)

    Google Scholar 

  114. R. Friedlein, X. Crispin, C.D. Simpson, M.D. Watson, F. Jackel, W. Osikowicz, S. Marciniak, M.P. de Jong, P. Samori, S.K.M. Jonsson, M. Fahlman, K. Mullen, J.P. Rabe, W.R. alaneck, Electronic structure of highly ordered films of self-assembled graphitic nanocolumns. Phys. Rev. B 68, 195414 (2003)

    ADS  Google Scholar 

  115. A.M. van de Craats, N. Stutzmann, O. Bunk, M.M. Nielsen, M. Watson, K. Mullen, H.D. Chanzy, H. Sirringhaus, R.H. Friend, Meso-epitaxial solution-growth of self-organizing discotic liquid-crystalline semiconductors. Adv. Mater. 15, 495–499 (2003)

    Google Scholar 

  116. E. Charlet, E. Grelet, P. Brettes, H. Bock, H. Saadaoui, L. Cisse, P. Destruel, N. Gherardi, I. Seguy, Ultrathin films of homeotropically aligned columnar liquid crystals on indium tin oxide electrodes. Appl. Phys. Lett. 92, 024107 (2008)

    ADS  Google Scholar 

  117. S. Sergeyev, J. Levin, J.-Y. Balandier, E. Pouzet, Y.H. Geerts, Homeotropic alignment in films of a mesogenic phthalocyanine depends on the nature of interactions with the surface. Mendeleev Commun. 19, 185–186 (2009)

    Google Scholar 

  118. E. Pouzet, V.D. Cupere, C. Heintz, J.W. Andreasen, D.W. Breiby, M.M. Nielsen, P. Viville, R. Lazzaroni, G. Gbabode, Y.H. Geerts, Homeotropic alignment of a discotic liquid crystal induced by a sacrificial layer. J. Phys. Chem. C 113, 14398–14406 (2009)

    Google Scholar 

  119. J.P. Bramble, D.J. Tate, D.J. Revill, K.H. Sheikh, J.R. Henderson, F. Liu, X. Zeng, G. Ungar, R.J. Bushby, S.D. Evans, Planar alignment of columnar discotic liquid crystals by isotropic phase dewetting on chemically patterned surfaces. Adv. Funct. Mater. 20, 914–920 (2010)

    Google Scholar 

  120. T.D. Choudhury, N.V.S. Rao, R. Tenent, J. Blackburn, B. Gregg, I.I. Smalyukh, Homeotropic alignment and director structures in thin films of triphenylamine-based discotic liquid crystals controlled by supporting nanostructured substrates and surface confinement. J. Phys. Chem. B 115, 609–617 (2011)

    Google Scholar 

  121. T. Bjornholm, T. Hassenkam, N. Reitzel, Supramolecular organization of highly conducting organic thin films by the Langmuir-Blodgett technique. J. Mater. Chem. 9, 1975–1990 (1999)

    Google Scholar 

  122. B.W. Laursen, K. Norgaard, N. Reitzel, J.B. Simonsen, C.B. Nielsen, J. Als-Nielsen, T. Bjornholm, T.I. Solling, M.M. Nielsen, O. Bunk, K. Kjaer, N. Tchebotareva, M.D. Watson, K. Mullen, J. Piris, Macroscopic alignment of graphene stacks by Langmuir–blodgett deposition of amphiphilic hexabenzocoronenes. Langmuir 20, 4139–4146 (2004)

    Google Scholar 

  123. N. Reitzel, T. Hassenkam, K. Balashev, T.R. Jensen, P.B. Howes, K. Kjaer, A. Fechtenkotter, N. Tchebotareva, S. Ito, K. Mullen, T. Bjornholm, Langmuir and Langmuir-Blodgett films of amphiphilic hexa-peri-hexabenzocoronene: New phase transitions and electronic properties controlled by pressure. Chem. Eur. J. 7, 4894–4901 (2001)

    Google Scholar 

  124. S. Cherian, C. Donley, D. Mathine, L. LaRussa, W. Xia, N. Armstrong, Effects of field dependent mobility and contact barriers on liquid crystalline phthalocyanine organic transistors. J. Appl. Phys. 96, 5638–5643 (2004)

    ADS  Google Scholar 

  125. N. Boden, R.J. Bushby, P.S. Martin, Triphenylene-based liquid crystals as self-assembled monolayers. Langmuir 15, 3790–3797 (1999)

    Google Scholar 

  126. H. Schönherr, F.J.B. Kremer, S. Kumar, J.A. Rego, H. Wolf, H. Ringsdorf, M. Jaschke, H.-J. Butt, E. Bamberg, Self-assembled monolayers of discotic liquid crystalline thioethers, discoid disulfides, and thiols on gold: molecular engineering of ordered surfaces. J. Am. Chem. Soc. 118, 13051–13057 (1996)

    Google Scholar 

  127. H. Monobe, H. Azehara, Y. Shimizu, M. Fujihira, Alignment of discotic nematic and columnar phases on self-assembled monolayers of alkanethiol and asymmetrical disulfide. Chem. Lett. 30, 1268–1269 (2001)

    Google Scholar 

  128. M. Duati, C. Grave, N. Tebeborateva, J. Wu, K. Mullen, A. Shaporenko, M. Zharnikov, J.K. Kriebel, G.M. Whitesides, M.A. Rampi, Electron transport across Hexa-peri-hexabenzocoronene units in a metal-self-assembled monolayer-metal junction. Adv. Mater. 18, 329–333 (2006)

    Google Scholar 

  129. A. Tracz, J.K. Jeszka, M. Watson, W. Pisula, K. Müllen, T. Pakula, Uniaxial alignment of the columnar super-structure of a hexa(alkyl) hexa-peri-hexabenzocoronene on untreated glass by simple solution processing. J. Am. Chem. Soc. 125, 1682–1683 (2003)

    Google Scholar 

  130. W. Pisula, A. Menon, M. Stepputat, I. Lieberwirth, U. Kolb, A. Tracz, H. Sirringhaus, T. Pakula, K. Mullen, A zone-casting technique for device fabrication of field effect transistors based on discotic hexa-peri-hexabenzocoronene. Adv. Mater. 17, 684–689 (2005)

    Google Scholar 

  131. A. Tracz, T. Makowski, S. Masirek, W. Pisula, Y.H. Geerts, Macroscopically aligned films of discotic phthalocyanine by zone casting. Nanotechnology 18, 485303 (2007)

    Google Scholar 

  132. C.Y. Liu, A.J. Bard, In-situ regrowth and purification by zone melting of organic single-crystal thin films yielding significantly enhanced optoelectronic properties. Chem. Mater. 12, 2353–2362 (2000)

    Google Scholar 

  133. W. Pisula, M. Kastler, D. Wasserfallen, T. Pakula, K. Müllen, Exceptionally long-range self-assembly of hexa-peri-hexabenzocoronene with dove-tailed alkyl substituents. J. Am. Chem. Soc. 126, 8074–8075 (2004)

    Google Scholar 

  134. A. Cristadoro, G. Lieser, H.J. Rader, K. Mullen, Field-force alignment of disc-type π systems. ChemPhysChem 8, 586–591 (2007)

    Google Scholar 

  135. D. Miyajima, K. Tashiro, F. Araoka, H. Takezoe, J. Kim, K. Kato, M. Takata, T. Aida, Liquid crystalline corannulene responsive to electric field. J. Am. Chem. Soc. 131, 44–45 (2009)

    Google Scholar 

  136. D. Miyajima, F. Araoka, H. Takezoe, J. Kim, K. Kato, M. Takata, T. Aida, Electric-field-responsive handle for large-area orientation of discotic liquid-crystalline molecules in millimeter-thick films. Angew. Chem. Int. Ed. 50, 7865–7869 (2011)

    Google Scholar 

  137. N. Hu, R. Shao, Y. Shen, D. Chen, N.A. Clark, D.M. Walba, An electric-field-responsive discotic liquid-crystalline hexa-peri-hexabenzocoronene/ oligothiophene hybrid. Adv. Mater. 26, 2066–2071 (2014)

    Google Scholar 

  138. I.O. Shklyarevskiy, P. Jonkheijm, N. Stutzmann, D. Wasserberg, H.J. Wondergem, P.C.M. Christianen, A.P.H.J. Schenning, D.M. de Leeuw, Z. Tomovic, J. Wu, K. Mullen, J.C. Maan, High anisotropy of the field-effect transistor mobility in magnetically aligned discotic liquid-crystalline semiconductors. J. Am. Chem. Soc. 127, 16233–16237 (2005)

    Google Scholar 

  139. J.-H. Lee, S.-M. Choi, B.D. Pate, M.H. Chisholm, Y.-S. Han, Magnetic uniaxial alignment of the columnar superstructure of discotic metallomesogens over the centimetre length scale. J. Mater. Chem. 16, 2785–2791 (2006)

    Google Scholar 

  140. H.-S. Kim, S.-M. Choi, J.-H. Lee, P. Busc, S.J. Koza, E.A. Verploegen, B.D. Pate, Uniaxially oriented, highly ordered, large area columnar superstructures of discotic supramolecules using magnetic field and surface interactions. Adv. Mater. 20, 1105–1109 (2008)

    Google Scholar 

  141. H. Monobe, K. Awazu, Y. Shimizu, Alignment control of a columnar liquid crystal for a uniformly homeotropic domain using circularly polarized infrared irradiation. Adv. Mater. 18, 607–610 (2006)

    Google Scholar 

  142. H. Monobe, K. Awazu, Y. Shimizu, Alignment change of hexahexylthiotriphenylene in the helical columnar phase by infrared laser irradiation. Thin Solid Films 518, 762–766 (2009)

    ADS  Google Scholar 

  143. M. Steinhart, S. Zimmermann, P. Goring, A.K. Schaper, U. Gosele, C. Weder, J.H. Wendorff, Liquid crystalline nanowires in porous alumina: geometric confinement versus influence of pore walls. Nano Lett. 5, 429–434 (2005)

    ADS  Google Scholar 

  144. M. Steinhart, S. Murano, A.K. Schaper, T. Ogawa, M. Tsuji, U. Gosele, C. Weder, J.H. Wendorff, Morphology of polymer/liquid-crystal nanotubes: influence of confinement. Adv. Funct. Mater. 15, 1656–1664 (2005)

    Google Scholar 

  145. W. Pisula, M. Kastler, D. Wasserfallen, R.J. Davies, M.C.G. Gutierrez, K. Mullen, From macro- to nanoscopic templating with nanographenes. J. Am. Chem. Soc. 128, 14424–14425 (2006)

    Google Scholar 

  146. L. Zhi, J. Wu, J. Li, U. Kolb, K. Mullen, Carbonization of disclike molecules in porous alumina membranes: toward carbon nanotubes with controlled graphene-layer orientation. Angew. Chem. Int. Ed. 44, 2120–2123 (2005)

    Google Scholar 

  147. P.O. Mouthuy, S. Melinte, Y.H. Geerts, A.M. Jonas, Uniaxial alignment of nanoconfined columnar mesophases. Nano Lett. 7, 2627–2632 (2007)

    ADS  Google Scholar 

  148. J. Cattle, P. Bao, J.P. Bramble, R.J. Bushby, S.D. Evans, J.E. Lydon, D.J. Tate, Controlled planar alignment of discotic liquid crystals in microchannels made using SU8 photoresist. Adv. Funct. Mater. 23, 5997–6006 (2013)

    Google Scholar 

  149. C.R. McNeill, N.C. Greenham, Conjugated-polymer blends for optoelectronics. Adv. Mater. 21, 1–11 (2009)

    Google Scholar 

  150. T. Christ, B. Glusen, A. Greiner, A. Kellner, R. Sander, V. Stumpflen, V. Tsukruk, J.H. Wendorff, Columnar discotics for light emitting diodes. Adv. Mater. 9, 48–51 (1997)

    Google Scholar 

  151. I.H. Stapff, V. Stümpflen, J.H. Wendorff, D.B. Spohn, D. M¨obius, Multi-layer light emitting diodes based on columnar discotics. Liq. Cryst. 23, 613–617 (1997)

    Google Scholar 

  152. A. Bacher, I. Bleyl, C.H. Erdelen, D. Haarer, W. Paulus, H.W. Schmidt, Low molecular weight and polymeric triphenylenes as hole transport materials in organic two-layer LEDs. Adv. Mater. 9, 1031–1035 (1997)

    Google Scholar 

  153. T. Hassheider, S.A. Benning, H.S. Kitzerow, M.F. Achard, H. Bock, Colortuned electroluminescence from columnar liquid crystalline alkyl arenecarboxylates. Angew. Chem. Int. Ed. 40, 2060–2063 (2001)

    Google Scholar 

  154. I. Seguy, P. Jolinat, P. Destruel, J. Farenc, R. Mamy, H. Bock, J. Ip, T.P. Nguyen, Red organic light emitting device made from triphenylene hexaester and perylene tetraester. J. Appl. Phys. 89, 5442–5448 (2001)

    Google Scholar 

  155. B.P. Rand, J. Genoe, P. Heremans, J. Poortmans, Solar cells utilizing small molecularweight organic semiconductors. Prog. Photovolt: Res. Appl. 15, 659–676 (2007)

    Google Scholar 

  156. B.A. Gregg, M.A. Fox, A.J. Bard, Photovoltaic effect in symmetrical cells of a liquid crystal porphyrin. J. Phys. Chem. 94, 1586–1598 (1990)

    Google Scholar 

  157. K. Petritsch, R.H. Friend, A. Lux, G. Rozenberg, S.C. Moratti, A.B. Holmes, Liquid crystalline phthalocyanines in organic solar cells. Synth. Met. 102, 1776–1777 (1999)

    Google Scholar 

  158. L. Schmidt-Mende, A. Fechtenkotter, K. Mullen, E. Moons, R.H. Friend, J.D. MacKenzie, Self-organized discotic liquid crystals for high-efficiency organic photovoltaics. Science 293, 1119–1122 (2001)

    ADS  Google Scholar 

  159. J.P. Schmidtke, R.H. Friend, M. Kastler, K. Müllen, Control of morphology in efficient photovoltaic diodes from discotic liquid crystals. J. Chem. Phys. 124, 174704 (2006)

    ADS  Google Scholar 

  160. M. Oukachmih, P. Destruel, I. Seguy, G. Ablart, P. Jolinat, S. Archambeau, M. Mabiala, S. Fouet, H. Bock, New organic discotic materials for photovoltaic conversion. Sol. Energy Mater. Sol. Cells 85, 535–543 (2005)

    Google Scholar 

  161. T. Hori, N. Fukuoka, T. Masuda, Y. Miyake, H. Yoshida, A. Fujii, Y. Shimizu, M. Ozaki, Bulk heterojunction organic solar cells utilizing 1,4,8,11,15,18,22,25-octahexylphthalocyanine. Sol. Energy Mater. Sol. Cells 95, 3087–3092 (2011)

    Google Scholar 

  162. N. Tchebotareva, X. Yin, M.D. Watson, P. Samori, J.P. Rabe, K. Müllen, Ordered architectures of a soluble hexa-peri-hexabenzocoronene-pyrene dyad: Thermotropic bulk properties and nanoscale phase segregation at surfaces. J. Am. Chem. Soc. 125, 9734–9739 (2003)

    Google Scholar 

  163. P. Samori, X. Yin, N. Tchebotareva, Z. Wang, T. Pakula, F. Jackel, M.D. Watson, A. Venturini, K. Müllen, J.P. Rabe, Self-assembly of electron donor-acceptor dyads into ordered architectures in two and three dimensions: Surface patterning and columnar double cables. J. Am. Chem. Soc. 126, 3567–3575 (2004)

    Google Scholar 

  164. H. Sirringhaus, Device physics of solution-processed organic field-effect transistors. Adv. Mater. 17, 2411–2425 (2005)

    Google Scholar 

  165. I.O. Shklyarevskiy, P. Jonkheijm, N. Stutzmann, D. Wasserberg, H.J. Wondergem, P.C.M. Christianen, A.P.H.J. Schenning, D.M. De Leeuw, Z. Tomovic, J. Wu, K. Mullen, J.C. Maan, High anisotropy of the field-effect transistor mobility in magnetically aligned discotic liquid-crystalline semiconductors. J. Am. Chem. Soc. 127, 16233–16237 (2005)

    Google Scholar 

  166. X. Guo, S. Xiao, M. Myers, Q. Miao, M.L. Steigerwald, C. Nuckolls, Photoresponsive nanoscale columnar transistors. PNAS 106, 691–696 (2009)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Manoj Mathews or Quan Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Mathews, M., Achalkumar, A.S., Li, Q. (2015). Self-assembled 1D Semiconductors: Liquid Crystalline Columnar Phase. In: Li, Q. (eds) Anisotropic Nanomaterials. NanoScience and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-18293-3_7

Download citation

Publish with us

Policies and ethics