Skip to main content

Methods and Structures for Self-assembly of Anisotropic 1D Nanocrystals

  • Chapter
  • First Online:
Book cover Anisotropic Nanomaterials

Part of the book series: NanoScience and Technology ((NANO))

Abstract

In the nanoscience and nanotechnology, the study of nanocrystal self-assembly has been regarded as a key technology in leading future industrial development. The colloidal self-assembly techniques, particularly for one-dimensional (1D) building blocks, have been widely adopted for the systematic fabrication of functional nanocrystals and received an extensive research attention. However, the increase in the building blocks’ anisotropy, e.g. from sphere to rod/wire, has dramatically leveled up the difficulty in organizing them into ordered structures. To realize tailored 1D nanocrystal self-assembled structures, a profound understanding and detailed design of self-assembly mechanism and procedures are much needed. Here, a thorough review over 1D nanocrystal self-assembly methods and alignments are present to achieve large-scale functional structures. Through different techniques, such as evaporation, template, electric field, Langmuir-Blodgett film and chemical bonding, nanocrystals with various shapes can be self-assembled on substrates, at interfaces and in solutions. These assembled structures that have been achieved so far, can exhibit different degrees of alignments, such as stripe pattern as non-close-packed structure, horizontal, vertical alignments as close-packed monolayers, nematic, semectic alignments, AB stacking of vertical alignments, three-dimensional (3D) assembly as close-packed multilayers. In general, these self-assembly techniques can reach much small dimension and create microstructures that possess unique properties different from their individual building blocks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. V.F. Puntes, K.M. Krishnan, A.P. Alivisatos, Colloidal nanocrystal shape and size control: the case of cobalt. Science 291, 2115–2117 (2001)

    ADS  Google Scholar 

  2. J.J. Li, Y.A. Wang, W. Guo, J.C. Keay, T.D. Mishima, M.B. Johnson, X. Peng, Large-scale synthesis of nearly monodisperse CdSe/CdS core/shell nanocrystals using air-stable reagents via successive ion layer adsorption and reaction. J. Am. Chem. Soc. 125, 12567–12575 (2003)

    Google Scholar 

  3. X. Wang, J. Zhuang, Q. Peng, Y. Li, A general strategy for nanocrystal synthesis. Nature 437, 121–124 (2005)

    ADS  Google Scholar 

  4. Y. Yin, A.P. Alivisatos, Colloidal nanocrystal synthesis and the organic-inorganic interface. Nature 437, 664–670 (2005)

    ADS  Google Scholar 

  5. Y. Xia, Y. Xiong, B. Lim, S.E. Skrabalak, Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics? Angew. Chem. Int. Ed. 48, 60–103 (2009)

    Google Scholar 

  6. Z. Zhuang, Q. Peng, Y. Li, Controlled synthesis of semiconductor nanostructures in the liquid phase. Chem. Soc. Rev. 40, 5492–5513 (2011)

    Google Scholar 

  7. K. Zhou, Y. Li, Catalysis based on nanocrystals with well-defined facets. Angew. Chem. Int. Ed. 51, 602–613 (2012)

    Google Scholar 

  8. E. Ye, S.-Y. Zhang, S.H. Lim, M. Bosman, Z. Zhang, K.Y. Win, M.-Y. Han, Ternary Cobalt–iron phosphide nanocrystals with controlled compositions, properties, and morphologies from nanorods and nanorice to split nanostructures. Chem. Eur. J. 17, 5982–5988 (2011)

    Google Scholar 

  9. S.-Y. Zhang, M.D. Regulacio, K.W. Shah, T. Sreethawong, Y. Zheng, M.-Y. Han, Colloidal preparation of monodisperse nanocrystals. J. Mol. Eng. Mater. 2, 1430001 (2014)

    Google Scholar 

  10. P. Moriarty, Nanostructured materials. Rep. Prog. Phys. 64, 297 (2001)

    ADS  Google Scholar 

  11. C.N.R. Rao, A.K. Cheetham, Science and technology of nanomaterials: current status and future prospects. J. Mater. Chem. 11, 2887–2894 (2001)

    Google Scholar 

  12. M. Law, J. Goldberger, P. Yang, Semiconductor nanowires and nanotubes. Annu. Rev. Mater. Res. 34, 83–122 (2004)

    ADS  Google Scholar 

  13. P.D. Cozzoli, T. Pellegrino, L. Manna, Synthesis, properties and perspectives of hybrid nanocrystal structures. Chem. Soc. Rev. 35, 1195–1208 (2006)

    Google Scholar 

  14. Z.W. Seh, S. Liu, S.-Y. Zhang, M.S. Bharathi, H. Ramanarayan, M. Low, K.W. Shah, Y.-W. Zhang, M.-Y. Han, Anisotropic growth of titania onto various gold nanostructures: synthesis, theoretical understanding, and optimization for catalysis. Angew. Chem. Int. Ed. 50, 10140–10143 (2011)

    Google Scholar 

  15. Z.W. Seh, S. Liu, S.-Y. Zhang, K.W. Shah, M.-Y. Han, Synthesis and multiple reuse of eccentric Au@TiO2 nanostructures as catalysts. Chem. Commun. 47, 6689–6691 (2011)

    Google Scholar 

  16. G. Wang, Q. Peng, Y. Li, Lanthanide-doped nanocrystals: synthesis, optical-magnetic properties, and applications. Acc. Chem. Res. 44, 322–332 (2011)

    Google Scholar 

  17. G. Guan, S.-Y. Zhang, Y. Cai, S. Liu, M.S. Bharathi, M. Low, Y. Yu, J. Xie, Y. Zheng, Y.-W. Zhang, M.-Y. Han, Convenient purification of gold clusters by co-precipitation for improved sensing of hydrogen peroxide, mercury ions and pesticides. Chem. Commun. 50, 5703–5705 (2014)

    Google Scholar 

  18. T. Sreethawong, K.W. Shah, S.-Y. Zhang, E. Ye, S.H. Lim, U. Maheswaran, W.Y. Mao, M.-Y. Han, Optimized production of copper nanostructures with high yields for efficient use as thermal conductivity-enhancing PCM dopant. J. Mater. Chem. A 2, 3417–3423 (2014)

    Google Scholar 

  19. C.L. Choi, A.P. Alivisatos, From artificial atoms to nanocrystal molecules: preparation and properties of more complex nanostructures. Annu. Rev. Phys. Chem. 61, 369–389 (2010)

    Google Scholar 

  20. M. Grzelczak, J. Vermant, E.M. Furst, L.M. Liz-Marzán, Directed self-assembly of nanoparticles. ACS Nano 4, 3591–3605 (2010)

    Google Scholar 

  21. M.P. Pileni, Inorganic nanocrystals self ordered in 2D superlattices: how versatile are the physical and chemical properties? Phys. Chem. Chem. Phys. 12, 11821–11835 (2010)

    Google Scholar 

  22. Z. Quan, J. Fang, Superlattices with non-spherical building blocks. Nano Today 5, 390–411 (2010)

    Google Scholar 

  23. M.R. Jones, K.D. Osberg, R.J. Macfarlane, M.R. Langille, C.A. Mirkin, Templated techniques for the synthesis and assembly of plasmonic nanostructures. Chem. Rev. 111, 3736–3827 (2011)

    Google Scholar 

  24. T. Wang, D. LaMontagne, J. Lynch, J. Zhuang, Y.C. Cao, Colloidal superparticles from nanoparticle assembly. Chem. Soc. Rev. 42, 2804–2823 (2013)

    Google Scholar 

  25. S.-Y. Zhang, M.D. Regulacio, M.-Y. Han, Self-assembly of colloidal one-dimensional nanocrystals. Chem. Soc. Rev. 43, 2301–2323 (2014)

    Google Scholar 

  26. P. Bartlett, R.H. Ottewill, P.N. Pusey, Superlattice formation in binary mixtures of hard-sphere colloids. Phys. Rev. Lett. 68, 3801–3804 (1992)

    ADS  Google Scholar 

  27. C.P. Collier, T. Vossmeyer, J.R. Heath, Nanocrystal superlattices. Annu. Rev. Phys. Chem. 49, 371–404 (1998)

    ADS  Google Scholar 

  28. C.B. Murray, C.R. Kagan, M.G. Bawendi, Snthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies. Annu. Rev. Mater. Sci. 30, 545–610 (2000)

    ADS  Google Scholar 

  29. T.K. Sau, C.J. Murphy, Self-assembly patterns formed upon solvent evaporation of aqueous cetyltrimethylammonium bromide-coated gold nanoparticles of various shapes. Langmuir 21, 2923–2929 (2005)

    Google Scholar 

  30. K.C. Ng, I.B. Udagedara, I.D. Rukhlenko, Y. Chen, Y. Tang, M. Premaratne, W. Cheng, Free-standing plasmonic-nanorod superlattice sheets. ACS Nano 6, 925–934 (2012)

    Google Scholar 

  31. T.S. Ahmadi, Z.L. Wang, T.C. Green, A. Henglein, M.A. El-Sayed, Shape-controlled synthesis of colloidal platinum nanoparticles. Science 272, 1924–1925 (1996)

    ADS  Google Scholar 

  32. M. Brust, M. Walker, D. Bethell, D.J. Schiffrin, R. Whyman, Synthesis of thiol-derivatised gold nanoparticles in a two-phase Liquid-Liquid system. J. Chem. Soc. Chem. Commun. 1994, 801–802 (1994)

    Google Scholar 

  33. M.-C. Daniel, D. Astruc, Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev. 104, 293–346 (2004)

    Google Scholar 

  34. S. Sun, C.B. Murray, D. Weller, L. Folks, A. Moser, Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science 287, 1989–1992 (2000)

    ADS  Google Scholar 

  35. Y. Sun, Y. Xia, Shape-controlled synthesis of gold and silver nanoparticles. Science 298, 2176–2179 (2002)

    ADS  Google Scholar 

  36. S.-H. Liu, H. Gao, E. Ye, M. Low, S.H. Lim, S.-Y. Zhang, X. Lieu, S. Tripathy, W. Tremel, M.-Y. Han, Graphitically encapsulated cobalt nanocrystal assemblies. Chem. Commun. 46, 4749–4751 (2010)

    Google Scholar 

  37. E. Ye, S.-Y. Zhang, S. Liu, M.-Y. Han, Disproportionation for growing copper nanowires and their controlled self-assembly facilitated by ligand exchange. Chem. Eur. J. 17, 3074–3077 (2011)

    Google Scholar 

  38. M. Bruchez, M. Moronne, P. Gin, S. Weiss, A.P. Alivisatos, Semiconductor nanocrystals as fluorescent biological labels. Science 281, 2013–2016 (1998)

    ADS  Google Scholar 

  39. T. Trindade, P. O’Brien, N.L. Pickett, Nanocrystalline semiconductors: synthesis, properties, and perspectives. Chem. Mater. 13, 3843–3858 (2001)

    Google Scholar 

  40. E.A. Meulenkamp, Synthesis and growth of ZnO nanoparticles. J. Phys. Chem. B 102, 5566–5572 (1998)

    Google Scholar 

  41. S. Sun, H. Zeng, Size-controlled synthesis of magnetite nanoparticles. J. Am. Chem. Soc. 124, 8204–8205 (2002)

    Google Scholar 

  42. E. Ye, S.-Y. Zhang, S.H. Lim, S. Liu, M.-Y. Han, Morphological tuning, self-assembly and optical properties of indium oxide nanocrystals. Phys. Chem. Chem. Phys. 12, 11923–11929 (2010)

    Google Scholar 

  43. S. Vaucher, M. Li, S. Mann, Synthesis of prussian blue nanoparticles and nanocrystal superlattices in reverse microemulsions. Angew. Chem. Int. Ed. 39, 1793–1796 (2000)

    Google Scholar 

  44. C.R. Martin, Nanomaterials: a membrane-based synthetic approach. Science 266, 1961–1966 (1994)

    ADS  Google Scholar 

  45. A. Stein, R.C. Schroden, Colloidal crystal templating of three-dimensionally ordered macroporous solids: materials for photonics and beyond. Curr. Opin. Solid State Mater. Sci. 5, 553–564 (2001)

    ADS  Google Scholar 

  46. B. Amir Parviz, D. Ryan, and G.M. Whitesides, Using self-assembly for the fabrication of nano-scale electronic and photonic devices. IEEE Trans. Adv. Pack. 26, 233–241 (2003)

    Google Scholar 

  47. C.J. Murphy, T.K. Sau, A.M. Gole, C.J. Orendorff, J. Gao, L. Gou, S.E. Hunyadi, T. Li, Anisotropic metal nanoparticles: synthesis, assembly, and optical applications. J. Phys. Chem. B 109, 13857–13870 (2005)

    Google Scholar 

  48. C. Nobile, V.A. Fonoberov, S. Kudera, A. Della Torre, A. Ruffino, G. Chilla, T. Kipp, D. Heitmann, L. Manna, R. Cingolani, A.A. Balandin, R. Krahne, Confined optical phonon modes in aligned nanorod arrays detected by resonant inelastic light scattering. Nano Lett. 7, 476–479 (2007)

    Google Scholar 

  49. A. Rizzo, C. Nobile, M. Mazzeo, M.D. Giorgi, A. Fiore, L. Carbone, R. Cingolani, L. Manna, G. Gigli, Polarized light emitting diode by long-range nanorod self-assembling on a water surface. ACS Nano 3, 1506–1512 (2009)

    Google Scholar 

  50. D. Vennerberg, Z. Lin, Upconversion nanocrystals: synthesis, properties, assembly and applications. Sci. Adv. Mater. 3, 26–40 (2011)

    Google Scholar 

  51. S.A. Maier, M.L. Brongersma, P.G. Kik, S. Meltzer, A.A. G. Requicha, B.E. Koel, H.A. Atwater, Plasmonics—a route to nanoscale optical devices (Adv. Mater. 13, 1501 (2001)), Adv. Mater. (Weinheim, Ger.) 15, 562–562 (2003)

    Google Scholar 

  52. S.A. Maier, P.G. Kik, H.A. Atwater, S. Meltzer, E. Harel, B.E. Koel, A.A.G. Requicha, Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides. Nat. Mater. 2, 229–232 (2003)

    ADS  Google Scholar 

  53. M. Rycenga, C.M. Cobley, J. Zeng, W. Li, C.H. Moran, Q. Zhang, D. Qin, Y. Xia, Controlling the synthesis and assembly of silver nanostructures for plasmonic applications. Chem. Rev. 111, 3669–3712 (2011)

    Google Scholar 

  54. A. Tao, F. Kim, C. Hess, J. Goldberger, R. He, Y. Sun, Y. Xia, P. Yang, Langmuir–Blodgett silver nanowire monolayers for molecular sensing using surface-enhanced Raman spectroscopy. Nano Lett. 3, 1229–1233 (2003)

    ADS  Google Scholar 

  55. J. Fang, S. Du, S. Lebedkin, Z. Li, R. Kruk, M. Kappes, H. Hahn, Gold mesostructures with tailored surface topography and their self-assembly arrays for surface-enhanced Raman spectroscopy. Nano Lett. 10, 5006–5013 (2010)

    ADS  Google Scholar 

  56. A. Chen, A.E. DePrince, A. Demortière, A. Joshi-Imre, E.V. Shevchenko, S.K. Gray, U. Welp, V.K. Vlasko-Vlasov, Self-assembled large Au nanoparticle arrays with regular hot spots for SERS. Small 7, 2365–2371 (2011)

    Google Scholar 

  57. X.-Z. Shi, C.-M. Shen, D.-K. Wang, C. Li, Y. Tian, Z.-C. Xu, C.-M. Wang, H.-J. Gao, Surface-enhanced Raman scattering properties of highly ordered self-assemblies of gold nanorods with different aspect ratios. Chin. Phys. B 20, 076103 (2011)

    ADS  Google Scholar 

  58. T.S. Sreeprasad, T. Pradeep, Reversible assembly and disassembly of gold nanorods induced by EDTA and its application in SERS tuning. Langmuir 27, 3381–3390 (2011)

    Google Scholar 

  59. Z. Zhu, H. Meng, W. Liu, X. Liu, J. Gong, X. Qiu, L. Jiang, D. Wang, Z. Tang, Superstructures and SERS properties of gold nanocrystals with different shapes. Angew. Chem. Int. Ed. 50, 1593–1596 (2011)

    Google Scholar 

  60. S. Sun, C.B. Murray, Synthesis of monodisperse cobalt nanocrystals and their assembly into magnetic superlattices. J. Appl. Phys. 85, 4325–4330 (1999)

    ADS  Google Scholar 

  61. S. Behrens, Preparation of functional magnetic nanocomposites and hybrid materials: recent progress and future directions. Nanoscale 3, 877–892 (2011)

    ADS  Google Scholar 

  62. D. Whang, S. Jin, Y. Wu, C.M. Lieber, Large-scale hierarchical organization of nanowire arrays for integrated nanosystems. Nano Lett. 3, 1255–1259 (2003)

    ADS  Google Scholar 

  63. D.V. Talapin, J.-S. Lee, M.V. Kovalenko, E.V. Shevchenko, Prospects of colloidal nanocrystals for electronic and optoelectronic applications. Chem. Rev. 110, 389–458 (2010)

    Google Scholar 

  64. I.J. Kramer, E.H. Sargent, Colloidal quantum dot photovoltaics: a path forward. ACS Nano 5, 8506–8514 (2011)

    Google Scholar 

  65. Z.-Y. Zhou, N. Tian, J.-T. Li, I. Broadwell, S.-G. Sun, Nanomaterials of high surface energy with exceptional properties in catalysis and energy storage. Chem. Soc. Rev. 40, 4167–4185 (2011)

    Google Scholar 

  66. W. Lu, J. Fang, K.L. Stokes, J. Lin, Shape evolution and self assembly of monodisperse PbTe nanocrystals. J. Am. Chem. Soc. 126, 11798–11799 (2004)

    Google Scholar 

  67. J. Zhang, A. Kumbhar, J. He, N.C. Das, K. Yang, J.-Q. Wang, H. Wang, K.L. Stokes, J. Fang, Simple cubic super crystals containing PbTe nanocubes and their core–shell building blocks. J. Am. Chem. Soc. 130, 15203–15209 (2008)

    Google Scholar 

  68. L. Motte, F. Billoudet, E. Lacaze, M.-P. Pileni, Self-organization of size-selected, nanoparticles into three-dimensional superlattices. Adv. Mater. 8, 1018–1020 (1996)

    Google Scholar 

  69. T. Mokari, M. Zhang, P. Yang, Shape, size, and assembly control of PbTe nanocrystals. J. Am. Chem. Soc. 129, 9864–9865 (2007)

    Google Scholar 

  70. J. Zhuang, H. Wu, Y. Yang, Y.C. Cao, Supercrystalline colloidal particles from artificial atoms. J. Am. Chem. Soc. 129, 14166–14167 (2007)

    Google Scholar 

  71. A. Demortière, P. Launois, N. Goubet, P.A. Albouy, C. Petit, Shape-controlled platinum nanocubes and their assembly into two-dimensional and three-dimensional superlattices. J. Phys. Chem. B 112, 14583–14592 (2008)

    Google Scholar 

  72. M. Pang, H.C. Zeng, Highly ordered self-assemblies of submicrometer Cu2O spheres and their hollow chalcogenide derivatives. Langmuir 26, 5963–5970 (2010)

    Google Scholar 

  73. K.X. Yao, X.M. Yin, T.H. Wang, H.C. Zeng, Synthesis, self-assembly, disassembly, and reassembly of two types of Cu2O nanocrystals unifaceted with 001 or 110 planes. J. Am. Chem. Soc. 132, 6131–6144 (2010)

    Google Scholar 

  74. D.V. Talapin, E.V. Shevchenko, C.B. Murray, A. Kornowski, S. Förster, H. Weller, CdSe and CdSe/CdS nanorod solids. J. Am. Chem. Soc. 126, 12984–12988 (2004)

    Google Scholar 

  75. S. Ahmed, K.M. Ryan, Self-assembly of vertically aligned nanorod supercrystals using highly oriented pyrolytic graphite. Nano Lett. 7, 2480–2485 (2007)

    ADS  Google Scholar 

  76. L. Carbone, C. Nobile, M. De Giorgi, F.D. Sala, G. Morello, P. Pompa, M. Hytch, E. Snoeck, A. Fiore, I.R. Franchini, M. Nadasan, A.F. Silvestre, L. Chiodo, S. Kudera, R. Cingolani, R. Krahne, L. Manna, Synthesis and micrometer-scale assembly of colloidal CdSe/CdS nanorods prepared by a seeded growth approach. Nano Lett. 7, 2942–2950 (2007)

    ADS  Google Scholar 

  77. W. Lu, Q. Liu, Z. Sun, J. He, C. Ezeolu, J. Fang, Super crystal structures of octahedral c-In2O3 nanocrystals. J. Am. Chem. Soc. 130, 6983–6991 (2008)

    Google Scholar 

  78. N.R. Jana, Shape effect in nanoparticle self-assembly. Angew. Chem. Int. Ed. 43, 1536–1540 (2004)

    Google Scholar 

  79. C.B. Murray, S. Sun, W. Gaschler, H. Doyle, T.A. Betley, C.R. Kagan, Colloidal synthesis of nanocrystals and nanocrystal superlattices. IBM J. Res. Dev. 45, 47–56 (2001)

    Google Scholar 

  80. M.P. Pileni, Nanocrystal self-assemblies: fabrication and collective properties. J. Phys. Chem. B 105, 3358–3371 (2001)

    Google Scholar 

  81. A.L. Rogach, D.V. Talapin, E.V. Shevchenko, A. Kornowski, M. Haase, H. Weller, Organization of matter on different size scales: monodisperse nanocrystals and their superstructures. Adv. Funct. Mater. 12, 653–664 (2002)

    Google Scholar 

  82. S. Kinge, M. Crego-Calama, D.N. Reinhoudt, Self-assembling nanoparticles at surfaces and interfaces. ChemPhysChem 9, 20–42 (2008)

    Google Scholar 

  83. Y. Min, M. Akbulut, K. Kristiansen, Y. Golan, J. Israelachvili, The role of interparticle and external forces in nanoparticle assembly. Nat. Mater. 7, 527–538 (2008)

    ADS  Google Scholar 

  84. Y. Ofir, B. Samanta, V.M. Rotello, Polymer and biopolymer mediated self-assembly of gold nanoparticles. Chem. Soc. Rev. 37, 1814–1825 (2008)

    Google Scholar 

  85. K.J.M. Bishop, C.E. Wilmer, S. Soh, B.A. Grzybowski, Nanoscale forces and their uses in self-assembly. Small 5, 1600–1630 (2009)

    Google Scholar 

  86. Y. Nagaoka, O. Chen, Z. Wang, Y.C. Cao, Structural control of nanocrystal superlattices using organic guest molecules. J. Am. Chem. Soc. 134, 2868–2871 (2012)

    Google Scholar 

  87. T. Wang, X. Wang, D. LaMontagne, Z. Wang, Z. Wang, Y.C. Cao, Shape-controlled synthesis of colloidal superparticles from nanocubes. J. Am. Chem. Soc. 134, 18225–18228 (2012)

    Google Scholar 

  88. M.D. Bentzon, J. van Wonterghem, S. Mørup, A. Thölén, C.J.W. Koch, Ordered aggregates of ultrafine iron oxide particles: ‘super crystals’. Philos. Mag. B 60, 169–178 (1989)

    ADS  Google Scholar 

  89. A. Singh, R.D. Gunning, S. Ahmed, C.A. Barrett, N.J. English, J.-A. Garate, K.M. Ryan, Controlled semiconductor nanorod assembly from solution: influence of concentration, charge and solvent nature. J. Mater. Chem. 22, 1562–1569 (2012)

    Google Scholar 

  90. W.M. Gelbart, R.P. Sear, J.R. Heath, S. Chaney, Array formation in nano-colloids: theory and experiment in 2D. Faraday Discuss. 112, 299–307 (1999)

    ADS  Google Scholar 

  91. E. Rabani, D.R. Reichman, P.L. Geissler, L.E. Brus, Drying-mediated self-assembly of nanoparticles. Nature 426, 271–274 (2003)

    ADS  Google Scholar 

  92. G. Yosef, E. Rabani, Self-assembly of nanoparticles into rings: a lattice-gas model. J. Phys. Chem. B 110, 20965–20972 (2006)

    Google Scholar 

  93. J.L. Baker, A. Widmer-Cooper, M.F. Toney, P.L. Geissler, A.P. Alivisatos, Device-scale perpendicular alignment of colloidal nanorods. Nano Lett. 10, 195–201 (2010)

    ADS  Google Scholar 

  94. T. Ming, X. Kou, H. Chen, T. Wang, H.-L. Tam, K.-W. Cheah, J.-Y. Chen, J. Wang, Ordered gold nanostructure assemblies formed by droplet evaporation. Angew. Chem. Int. Ed. 47, 9685–9690 (2008)

    Google Scholar 

  95. D. Bargeman, F. van Voorst Vader, Van der waals forces between immersed particles, J. Electr. Chem. Interf. Electrochem. 37, 45–52 (1972)

    Google Scholar 

  96. B. Nikoobakht, Z.L. Wang, M.A. El-Sayed, Self-assembly of gold nanorods. J. Phys. Chem. B 104, 8635–8640 (2000)

    Google Scholar 

  97. J. Kleinert, S. Kim, O.D. Velev, Electric-field-assisted convective assembly of colloidal crystal coatings. Langmuir 26, 10380–10385 (2010)

    Google Scholar 

  98. P.A. Smith, C.D. Nordquist, T.N. Jackson, T.S. Mayer, B.R. Martin, J. Mbindyo, T.E. Mallouk, Electric-field assisted assembly and alignment of metallic nanowires. Appl. Phys. Lett. 77, 1399–1401 (2000)

    ADS  Google Scholar 

  99. O. Harnack, C. Pacholski, H. Weller, A. Yasuda, J.M. Wessels, Rectifying behavior of electrically aligned ZnO nanorods. Nano Lett. 3, 1097–1101 (2003)

    ADS  Google Scholar 

  100. S. Gupta, Q. Zhang, T. Emrick, T.P. Russell, “Self-corralling” nanorods under an applied electric field. Nano Lett. 6, 2066–2069 (2006)

    ADS  Google Scholar 

  101. Z. Hu, M.D. Fischbein, C. Querner, M. Drndić, Electric-field-driven accumulation and alignment of CdSe and CdTe nanorods in nanoscale devices. Nano Lett. 6, 2585–2591 (2006)

    ADS  Google Scholar 

  102. K.M. Ryan, A. Mastroianni, K.A. Stancil, H. Liu, A.P. Alivisatos, Electric-field-assisted assembly of perpendicularly oriented nanorod superlattices. Nano Lett. 6, 1479–1482 (2006)

    ADS  Google Scholar 

  103. M. Mittal, E.M. Furst, Electric field-directed convective assembly of ellipsoidal colloidal particles to create optically and mechanically anisotropic thin films. Adv. Funct. Mater. 19, 3271–3278 (2009)

    Google Scholar 

  104. M. Zorn, M.N. Tahir, B. Bergmann, W. Tremel, C. Grigoriadis, G. Floudas, R. Zentel, Orientation and dynamics of ZnO nanorod liquid crystals in electric fields. Macromol. Rapid Commun. 31, 1101–1107 (2010)

    Google Scholar 

  105. G. Michael, H. Michael, The preparation of ordered colloidal magnetic particles by magnetophoretic deposition. J. Phys. D Appl. Phys. 32, L111 (1999)

    Google Scholar 

  106. J.O.M. Bockris, A.K.N. Reddy, M. Gamboa-Aldeco, M.E. Gamboa-Aldeco, Modern Electrochemistry. Springer, 2000

    Google Scholar 

  107. T. Vossmeyer, E. DeIonno, J.R. Heath, Light-directed assembly of nanoparticles. Angew. Chem. Int. Ed. Engl. 36, 1080–1083 (1997)

    Google Scholar 

  108. T. Vossmeyer, S. Jia, E. DeIonno, M.R. Diehl, S.-H. Kim, X. Peng, A.P. Alivisatos, J.R. Heath, Combinatorial approaches toward patterning nanocrystals. J. Appl. Phys. 84, 3664–3670 (1998)

    ADS  Google Scholar 

  109. H.X. He, H. Zhang, Q.G. Li, T. Zhu, S.F.Y. Li, Z.F. Liu, Fabrication of designed architectures of Au nanoparticles on solid substrate with printed self-assembled monolayers as templates. Langmuir 16, 3846–3851 (2000)

    Google Scholar 

  110. F. Fan, K.J. Stebe, Size-selective deposition and sorting of lyophilic colloidal particles on surfaces of patterned wettability. Langmuir 21, 1149–1152 (2005)

    Google Scholar 

  111. A. Akey, C. Lu, L. Yang, I.P. Herman, Formation of thick, large-area nanoparticle superlattices in lithographically defined geometries. Nano Lett. 10, 1517–1521 (2010)

    ADS  Google Scholar 

  112. M. Artemyev, B. Möller, U. Woggon, Unidirectional alignment of CdSe nanorods. Nano Lett. 3, 509–512 (2003)

    ADS  Google Scholar 

  113. S. Liu, J.B.H. Tok, J. Locklin, Z. Bao, Assembly and alignment of metallic nanorods on surfaces with patterned wettability. Small 2, 1448–1453 (2006)

    Google Scholar 

  114. Q. Zhang, S. Gupta, T. Emrick, T.P. Russell, Surface-functionalized CdSe nanorods for assembly in diblock copolymer templates. J. Am. Chem. Soc. 128, 3898–3899 (2006)

    Google Scholar 

  115. C. Hamon, M. Postic, E. Mazari, T. Bizien, C. Dupuis, P. Even-Hernandez, A. Jimenez, L. Courbin, C. Gosse, F. Artzner, V. Marchi-Artzner, Three-dimensional self-assembling of gold nanorods with controlled macroscopic shape and local smectic B order. ACS Nano 6, 4137–4146 (2012)

    Google Scholar 

  116. C. Kuemin, L. Nowack, L. Bozano, N.D. Spencer, H. Wolf, Oriented assembly of gold nanorods on the single-particle level. Adv. Funct. Mater. 22, 702–708 (2012)

    Google Scholar 

  117. A.P. Alivisatos, K.P. Johnsson, X. Peng, T.E. Wilson, C.J. Loweth, M.P. Bruchez, P.G. Schultz, Organization of ‘nanocrystal molecules’ using DNA. Nature 382, 609–611 (1996)

    ADS  Google Scholar 

  118. E. Dujardin, L.-B. Hsin, C.R.C. Wang, S. Mann, DNA-driven self-assembly of gold nanorods. Chem. Commun. 2001, 1264–1265 (2001)

    Google Scholar 

  119. B. Pan, L. Ao, F. Gao, H. Tian, R. He, D. Cui, End-to-end self-assembly and colorimetric characterization of gold nanorods and nanospheres via oligonucleotide hybridization. Nanotechnology 16, 1776 (2005)

    ADS  Google Scholar 

  120. B. Pan, D. Cui, C. Ozkan, P. Xu, T. Huang, Q. Li, H. Chen, F. Liu, F. Gao, R. He, DNA-templated ordered array of gold nanorods in one and two dimensions. J. Phys. Chem. C 111, 12572–12576 (2007)

    Google Scholar 

  121. H.-C. Huang, P. Koria, S.M. Parker, L. Selby, Z. Megeed, K. Rege, Optically responsive gold nanorod–polypeptide assemblies. Langmuir 24, 14139–14144 (2008)

    Google Scholar 

  122. W. Cheng, M.J. Campolongo, J.J. Cha, S.J. Tan, C.C. Umbach, D.A. Muller, D. Luo, Free-standing nanoparticle superlattice sheets controlled by DNA. Nat. Mater. 8, 519–525 (2009)

    ADS  Google Scholar 

  123. R. Iwaura, T. Iizawa, H. Minamikawa, M. Ohnishi-Kameyama, T. Shimizu, Diverse morphologies of self-assemblies from homoditopic 1,18-nucleotide-appended bolaamphiphiles: effects of nucleobases and complementary oligonucleotides. Small 6, 1131–1139 (2010)

    Google Scholar 

  124. M.A. Correa-Duarte, J. Pérez-Juste, A. Sánchez-Iglesias, M. Giersig, L.M. Liz-Marzán, Aligning Au nanorods by using carbon nanotubes as templates. Angew. Chem. Int. Ed. 44, 4375–4378 (2005)

    Google Scholar 

  125. E. Ploshnik, A. Salant, U. Banin, R. Shenhar, Hierarchical surface patterns of nanorods obtained by co-assembly with block copolymers in ultrathin films. Adv. Mater. 22, 2774–2779 (2010)

    Google Scholar 

  126. E. Ploshnik, A. Salant, U. Banin, R. Shenhar, Co-assembly of block copolymers and nanorods in ultrathin films: effects of copolymer size and nanorod filling fraction. Phys. Chem. Chem. Phys. 12, 11885–11893 (2010)

    Google Scholar 

  127. M.A. Modestino, E.R. Chan, A. Hexemer, J.J. Urban, R.A. Segalman, Controlling nanorod self-assembly in polymer thin films. Macromolecules 44, 7364–7371 (2011)

    ADS  Google Scholar 

  128. K. Thorkelsson, A.J. Mastroianni, P. Ercius, T. Xu, Direct nanorod assembly using block copolymer-based supramolecules. Nano Lett. 12, 498–504 (2011)

    ADS  Google Scholar 

  129. S.U. Pickering, CXCVI.-Emulsions. J. Chem. Soc. Trans. 91, 2001–2021 (1907)

    Google Scholar 

  130. W. Ramsden, Separation of solids in the surface-layers of solutions and ‘suspensions’ (observations on surface-membranes, bubbles, emulsions, and mechanical coagulation).—preliminary account. Proc. R. Soc. Lond. 72, 156–164 (1903)

    Google Scholar 

  131. P. Pieranski, Two-dimensional interfacial colloidal crystals. Phys. Rev. Lett. 45, 569–572 (1980)

    ADS  Google Scholar 

  132. A. Boker, J. He, T. Emrick, T.P. Russell, Self-assembly of nanoparticles at interfaces. Soft Matter 3, 1231–1248 (2007)

    ADS  Google Scholar 

  133. J. He, Q. Zhang, S. Gupta, T. Emrick, T.P. Russell, P. Thiyagarajan, Drying droplets: a window into the behavior of nanorods at interfaces. Small 3, 1214–1217 (2007)

    Google Scholar 

  134. E.M. Furst, Directing colloidal assembly at fluid interfaces. Proc. Natl. Acad. Sci. U.S.A. 108, 20853–20854 (2011)

    ADS  Google Scholar 

  135. F. Kim, S. Kwan, J. Akana, P. Yang, Langmuir–Blodgett nanorod assembly. J. Am. Chem. Soc. 123, 4360–4361 (2001)

    Google Scholar 

  136. P. Yang, F. Kim, Langmuir-Blodgett assembly of one-dimensional nanostructures. ChemPhysChem 3, 503–506 (2002)

    Google Scholar 

  137. N. Pradhan, S. Efrima, Supercrystals of uniform nanorods and nanowires, and the nanorod-to-nanowire oriented transition. J. Phys. Chem. B 108, 11964–11970 (2004)

    Google Scholar 

  138. Z. Nie, D. Fava, E. Kumacheva, S. Zou, G.C. Walker, M. Rubinstein, Self-assembly of metal-polymer analogues of amphiphilic triblock copolymers. Nat. Mater. 6, 609–614 (2007)

    Google Scholar 

  139. L.S. Li, A.P. Alivisatos, Semiconductor nanorod liquid crystals and their assembly on a substrate. Adv. Mater. 15, 408–411 (2003)

    Google Scholar 

  140. K. Soulantica, A. Maisonnat, M.-C. Fromen, M.-J. Casanove, B. Chaudret, Spontaneous formation of ordered 3D superlattices of nanocrystals from polydisperse colloidal solutions. Angew. Chem. Int. Ed. 42, 1945–1949 (2003)

    Google Scholar 

  141. H.-S. Park, A. Agarwal, N.A. Kotov, O.D. Lavrentovich, Controllable side-by-side and end-to-end assembly of Au nanorods by lyotropic chromonic materials. Langmuir 24, 13833–13837 (2008)

    Google Scholar 

  142. T.S. Sreeprasad, A.K. Samal, T. Pradeep, One-, two-, and three-dimensional superstructures of gold nanorods induced by dimercaptosuccinic acid. Langmuir 24, 4589–4599 (2008)

    Google Scholar 

  143. Z. Huo, C.-K. Tsung, W. Huang, M. Fardy, R. Yan, X. Zhang, Y. Li, P. Yang, Self-organized ultrathin oxide nanocrystals. Nano Lett. 9, 1260–1264 (2009)

    ADS  Google Scholar 

  144. K.K. Caswell, J.N. Wilson, U.H.F. Bunz, C.J. Murphy, Preferential end-to-end assembly of gold nanorods by Biotin–Streptavidin connectors. J. Am. Chem. Soc. 125, 13914–13915 (2003)

    Google Scholar 

  145. K.G. Thomas, S. Barazzouk, B.I. Ipe, S.T.S. Joseph, P.V. Kamat, Uniaxial plasmon coupling through longitudinal self-assembly of gold nanorods. J. Phys. Chem. B 108, 13066–13068 (2004)

    Google Scholar 

  146. J.-Y. Chang, H. Wu, H. Chen, Y.-C. Ling, W. Tan, Oriented assembly of Au nanorods using biorecognition system. Chem. Commun. 2005, 1092–1094 (2005)

    Google Scholar 

  147. X. Hu, W. Cheng, T. Wang, E. Wang, S. Dong, Well-ordered end-to-end linkage of gold nanorods. Nanotechnology 16, 2164 (2005)

    ADS  Google Scholar 

  148. S.T. Shibu Joseph, B.I. Ipe, P. Pramod, K.G. Thomas, Gold nanorods to nanochains: mechanistic investigations on their longitudinal assembly using α,ω-alkanedithiols and interplasmon coupling. J. Phys. Chem. B 110, 150–157 (2006)

    Google Scholar 

  149. P.K. Sudeep, S.T.S. Joseph, K.G. Thomas, Selective detection of cysteine and glutathione using gold nanorods. J. Am. Chem. Soc. 127, 6516–6517 (2005)

    Google Scholar 

  150. M.H. Zareie, X. Xu, M.B. Cortie, In situ organization of gold nanorods on mixed self-assembled-monolayer substrates. Small 3, 139–145 (2007)

    Google Scholar 

  151. S. Zhang, X. Kou, Z. Yang, Q. Shi, G.D. Stucky, L. Sun, J. Wang, C. Yan, Nanonecklaces assembled from gold rods, spheres, and bipyramids. Chem. Commun. 2007, 1816–1818 (2007)

    Google Scholar 

  152. N.D. Denkov, O.D. Velev, P.A. Kralchevsky, I.B. Ivanov, H. Yoshimura, K. Nagayama, Two-dimensional crystallization. Nature 361, 26–26 (1993)

    ADS  Google Scholar 

  153. F. Dumestre, B. Chaudret, C. Amiens, M. Respaud, P. Fejes, P. Renaud, P. Zurcher, Unprecedented crystalline super-lattices of monodisperse cobalt nanorods. Angew. Chem. Int. Ed. 42, 5213–5216 (2003)

    Google Scholar 

  154. C.-C. Kang, C.-W. Lai, H.-C. Peng, J.-J. Shyue, P.-T. Chou, 2D self-bundled CdS nanorods with micrometer dimension in the absence of an external directing process. ACS Nano 2, 750–756 (2008)

    Google Scholar 

  155. A.M. Hung, N.A. Konopliv, J.N. Cha, Solvent-based assembly of CdSe nanorods in solution. Langmuir 27, 12322–12328 (2011)

    Google Scholar 

  156. W. Ni, R.A. Mosquera, J. Pérez-Juste, L.M. Liz-Marzán, Evidence for hydrogen-bonding-directed assembly of gold nanorods in aqueous solution. J. Phys. Chem. Lett. 1, 1181–1185 (2010)

    Google Scholar 

  157. N. Zhao, K. Liu, J. Greener, Z. Nie, E. Kumacheva, Close-packed superlattices of side-by-side assembled Au-CdSe nanorods. Nano Lett. 9, 3077–3081 (2009)

    ADS  Google Scholar 

  158. Z. Sun, W. Ni, Z. Yang, X. Kou, L. Li, J. Wang, pH-Controlled reversible assembly and disassembly of gold nanorods. Small 4, 1287–1292 (2008)

    Google Scholar 

  159. S.-Y. Zhang, E. Ye, S. Liu, S.H. Lim, S.Y. Tee, Z. Dong, M.-Y. Han, Temperature and chemical bonding-directed self-assembly of cobalt phosphide nanowires in reaction solutions into vertical and horizontal alignments. Adv. Mater. 24, 4369–4375 (2012)

    Google Scholar 

  160. C.J. Orendorff, P.L. Hankins, C.J. Murphy, pH-Triggered assembly of gold nanorods. Langmuir 21, 2022–2026 (2005)

    Google Scholar 

  161. D. Baranov, A. Fiore, M. van Huis, C. Giannini, A. Falqui, U. Lafont, H. Zandbergen, M. Zanella, R. Cingolani, L. Manna, Assembly of colloidal semiconductor nanorods in solution by depletion attraction. Nano Lett. 10, 743–749 (2010)

    ADS  Google Scholar 

  162. A. Gole, C.J. Murphy, Biotin–Streptavidin-induced aggregation of gold nanorods: tuning rod–rod orientation. Langmuir 21, 10756–10762 (2005)

    Google Scholar 

  163. K. An, N. Lee, J. Park, S.C. Kim, Y. Hwang, J.-G. Park, J.-Y. Kim, J.-H. Park, M.J. Han, J. Yu, T. Hyeon, Synthesis, characterization, and self-assembly of pencil-shaped CoO nanorods. J. Am. Chem. Soc. 128, 9753–9760 (2006)

    Google Scholar 

  164. B.P. Khanal, E.R. Zubarev, Rings of nanorods. Angew. Chem. Int. Ed. 46, 2195–2198 (2007)

    Google Scholar 

  165. B. Ye, G. Qian, X. Fan, Z. Wang, Self-assembled superlattices from colloidal TiO2 nanorods. Curr. Nanosci. 6, 262–268 (2010)

    ADS  Google Scholar 

  166. A. Ghezelbash, B. Koo, B.A. Korgel, Self-assembled stripe patterns of CdS nanorods. Nano Lett. 6, 1832–1836 (2006)

    ADS  Google Scholar 

  167. S.A. Maier, M.L. Brongersma, P.G. Kik, S. Meltzer, A.A.G. Requicha, H.A. Atwater, Plasmonics—a route to nanoscale optical devices. Adv. Mater. 13, 1501–1505 (2001)

    Google Scholar 

  168. M.S. Gudiksen, K.N. Maher, L. Ouyang, H. Park, Electroluminescence from a single-nanocrystal transistor. Nano Lett. 5, 2257–2261 (2005)

    ADS  Google Scholar 

  169. K. Mitamura, T. Imae, N. Saito, O. Takai, Fabrication and self-assembly of hydrophobic gold nanorods. J. Phys. Chem. B 111, 8891–8898 (2007)

    Google Scholar 

  170. L. Onsager, The effects of shape on the interaction of colloidal particles. Ann. NY. Acad. Sci. 51, 627–659 (1949)

    ADS  Google Scholar 

  171. D. Frenkel, H.N.W. Lekkerkerker, A. Stroobants, Thermodynamic stability of a smectic phase in a system of hard rods. Nature 332, 822–823 (1988)

    ADS  Google Scholar 

  172. A. Singh, H. Geaney, F. Laffir, K.M. Ryan, Colloidal synthesis of Wurtzite Cu2ZnSnS4 nanorods and their perpendicular assembly. J. Am. Chem. Soc. 134, 2910–2913 (2012)

    Google Scholar 

  173. A. Singh, C. Dickinson, K.M. Ryan, Insight into the 3D architecture and quasicrystal symmetry of multilayer nanorod assemblies from Moiré interference patterns. ACS Nano 6, 3339–3345 (2012)

    Google Scholar 

  174. Z. Zhang, H. Sun, X. Shao, D. Li, H. Yu, M. Han, Three-dimensionally oriented aggregation of a few hundred nanoparticles into monocrystalline architectures. Adv. Mater. 17, 42–47 (2005)

    Google Scholar 

  175. J. Zhuang, A.D. Shaller, J. Lynch, H. Wu, O. Chen, A.D.Q. Li, Y.C. Cao, Cylindrical superparticles from semiconductor nanorods. J. Am. Chem. Soc. 131, 6084–6085 (2009)

    Google Scholar 

  176. T. Wang, J. Zhuang, J. Lynch, O. Chen, Z. Wang, X. Wang, D. LaMontagne, H. Wu, Z. Wang, Y.C. Cao, Self-assembled colloidal superparticles from nanorods. Science 338, 358–363 (2012)

    ADS  Google Scholar 

  177. Z.-C. Xu, C.-M. Shen, C.-W. Xiao, T.-Z. Yang, S.-T. Chen, H.-L. Li, H.-J. Gao, Fabrication of gold nanorod self-assemblies from rod and sphere mixtures via shape self-selective behavior. Chem. Phys. Lett. 432, 222–225 (2006)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shuang-Yuan Zhang or Ming-Yong Han .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Zhang, SY., Shah, K.W., Han, MY. (2015). Methods and Structures for Self-assembly of Anisotropic 1D Nanocrystals. In: Li, Q. (eds) Anisotropic Nanomaterials. NanoScience and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-18293-3_2

Download citation

Publish with us

Policies and ethics