Skip to main content

Event-Triggered Sliding Mode Control for Robust Stabilization of Linear Multivariable Systems

  • Chapter
Recent Advances in Sliding Modes: From Control to Intelligent Mechatronics

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 24))

Abstract

Event-triggered sliding mode control for robust stabilization of linear systems is presented here. In event-triggered control strategy the control law is not updated in periodic manner but a specific condition is used to generate the possible triggering instant for the control update. It is seen that with the sliding mode control the sequence of triggering instants generated by event condition does not exhibit accumulation of triggering instants in the presence of disturbances. We propose the sufficient event condition for the sliding mode control that guarantees that in the finite time sliding mode occurs in the system in the vicinity of sliding surface and remains within a predesigned region. An analysis for event triggered stabilization of fractional order systems is briefly given. The same triggering condition developed for integer order systems also guarantees stability of fractional order systems. A numerical example is given to show the effectiveness of the above result.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Årźen, K.E.: A simple event-based PID controller. In: Preprints 14th World Congr. IFAC, Beijing (1999)

    Google Scholar 

  2. Åström, A.J., Bernhardsson, B.: Comparison of riemann and lebesgue sampling for first order stochastic systems. Int. Conf. Decision and Control (2002)

    Google Scholar 

  3. Tabuada, P.: Event-triggered real-time scheduling of stabilizing control tasks. IEEE Trans. Autom. Control 52(9), 1680–1685 (2007)

    Article  MathSciNet  Google Scholar 

  4. Tallapragada, P., Chopra, N.: On event triggered tracking for nonlinear systems. IEEE Transactions on Automatic Control 58(9), 2343–2348 (2013)

    Article  MathSciNet  Google Scholar 

  5. Lunze, J., Lehmann, D.: A state-feedback approach to event-based control. Automatica 46(1), 211–215 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  6. Behera, A.K., Bandyopadhyay, B.: Event triggered robust stabilization of linear systems. In: Proceedings of the Annual Conference of IEEE Industrial Electronics Society, Dallas, USA, 29 October-1November, pp. 133–138 (2014)

    Google Scholar 

  7. Brockett, R., Liberzon, D.: Quantized feedback stabilization of linear systems. IEEE Trans. Autom. Control 45(7), 1279–1289 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  8. Elia, N., Mitter, S.: Stabilization of linear systems with limited information. IEEE Trans. Autom. Control 46(9), 1384–1400 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  9. Xu, Y.-K., Cao, X.-R.: Lebesgue-sampling-based optimal control problems with time aggregation. IEEE Trans. Autom. Control 56(5), 1097–1109 (2011)

    Article  MathSciNet  Google Scholar 

  10. Mazo, J.M., Tabuada, P.: Decentralized event-triggered control over wireless sensor/actuator networks. IEEE Trans. Autom. Control 56(10), 2456–2461 (2011)

    Article  MathSciNet  Google Scholar 

  11. Tallapragada, P., Chopra, N.: Decentralized event-triggering for control of nonlinear systems. IEEE Trans. Autom. Control 59(12), 3312–3324 (2014)

    Article  MathSciNet  Google Scholar 

  12. Premaratne, U., Halgamuge, S.K., Mareels, I.M.Y.: Event triggered adaptive differential modulation: a new method for traffic reduction in networked control systems. IEEE Trans. Autom. Control 58(7), 1696–1706 (2013)

    Article  MathSciNet  Google Scholar 

  13. Wang, X., Lemmon, M.D.: Self-triggered feedback control systems with finite-gain \(\mathcal{L}_2 \) stability. IEEE Trans. Autom. Control 54(3), 452–467 (2009)

    Article  MathSciNet  Google Scholar 

  14. Wang, X., Lemmon, M.D.: Self-triggering under state-independent disturbances. IEEE Trans. Autom. Control 55(6), 1494–1500 (2010)

    Article  MathSciNet  Google Scholar 

  15. Anta, A., Tabuada, P.: To sample or not to sample: self-triggered control for nonlinear systems. IEEE Trans. Autom. Control 55(9), 2030–2042 (2010)

    Article  MathSciNet  Google Scholar 

  16. Anta, A., Tabuada, P.: Preliminary results on state-triggered stabilizing control tasks. In: 45th IEEE Proc. Conf. Decision and Control, pp. 892–897 (2010)

    Google Scholar 

  17. Heemels, W.P.M.H., Donkers, M.C.F., Teel, A.R.: Periodic event-trigggered control for linear systems. IEEE Trans. Autom. Control 58(4), 847–861 (2013)

    Article  MathSciNet  Google Scholar 

  18. Garcia, E., Antsaklis, P.J.: Model-based event-triggered control for systems with quantization and time-varying network delays. IEEE Trans. Autom. Control 58(2), 422–434 (2013)

    Article  MathSciNet  Google Scholar 

  19. Heemels, W.P.M.H., Donkers, M.C.F.: Model-based periodic event-triggered control for linear systems. Automatica 49(3), 698–711 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  20. Borgers, D.P., Heemels, W.P.M.H.: Event-separtion propertirs of event-triggered control systems. IEEE Trans. Autom. Control 59(10), 2644–2656 (2014)

    Article  MathSciNet  Google Scholar 

  21. Donkers, M.C.F., Heemels, W.P.M.H.: Ouput-based event-triggered control with guaranteed \(\mathcal{L}_{\infty} \)-gain and improved and decntralized event-triggering. IEEE Trans. Autom. Control 57(6), 1362–1376 (2012)

    Article  MathSciNet  Google Scholar 

  22. Sontag, E.D.: Smooth stabilization implies coprime factorization. IEEE Trans. Autom. Control 34(4), 435–443 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  23. Khalil, H.: Nonlinear Systems, 3rd edn. Prentice-Hall, Upper Saddle River (2002)

    MATH  Google Scholar 

  24. Utkin, V.I.: Variable structure systems with sliding modes. IEEE Trans. Autom. Control 22(2), 212–222 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  25. Gao, W., Wang, Y., Homaifa, A.: Discret-time variable structure control systems. IEEE Trans. Ind. Electron. 42(2), 117–122 (1995)

    Article  Google Scholar 

  26. Bartoszewicz, A.: Discrete-time quasi-sliding-mode control strategies. IEEE Trans. Ind. Electron. 45(4), 633–637 (1998)

    Article  Google Scholar 

  27. Su, W.-C., Drakunov, S.V., Özgüner, Ü.: An O(T 2) baoundary layer in sliding mode for sampled data systems. IEEE Trans. Autom. Control 45(3), 482–485 (2000)

    Article  MATH  Google Scholar 

  28. Janardhanan, S., Bandyopadhyay, B.: Output feedback sliding-mode control for uncertain systems using fast output sampling technique. IEEE Trans. Ind. Electron. 53(5), 1677–1682 (2006)

    Article  Google Scholar 

  29. Bandyopadhyay, B., Janardhanan, S.: Discrete-time sliding mode control- A multirate output feedback approach. LNCIS. Springer (2005)

    Google Scholar 

  30. Abidi, K., Xu, J.-X., Yu, X.: On the discrete-time integral sliding-mode control. IEEE Trans. Autom. Control 52(4), 709–715 (2007)

    Article  MathSciNet  Google Scholar 

  31. Saaj, M.C., Bandyopadhyay, B., Unbehauen, H.: A new algorithm for discrete-time sliding-mode control using fast output sampling feedback. IEEE Trans. Ind. Electron. 49(3), 518–523 (2002)

    Article  Google Scholar 

  32. Galias, Z., Yu, X.: Euler’s discretization of single-input sliding mode control systems. IEEE Trans. Autom. Control 52(9), 1726–1730 (2007)

    Article  MathSciNet  Google Scholar 

  33. Podlubny, I.: Fractional Differential Equations, 3rd edn. Mathematics in Science and Engineering, vol. 198. Academic Press (1999)

    Google Scholar 

  34. Kamal, S., Raman, A., Bandyopadhyay, B.: Finite-time stabilization of fractional order uncertain chain of integrators: An integral sliding mode approach. IEEE Trans. Autom. Control 58(6), 1597–1602 (2013)

    Article  MathSciNet  Google Scholar 

  35. Bandyopadhyay, B., Kamal, S.: Stabilization and Control of Fractional Order Systems: A Sliding Mode Approach. LNEE, vol. 317. Springer, Heidelberg (2015)

    Book  Google Scholar 

  36. Lakshmikantham, V., Leela, S., Devi, J.V.: Theory of Fractional Dynamic Systems. Cambridge Scientific Publishers (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhisek K. Behera .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Behera, A.K., Bandyopadhyay, B., Xavier, N., Kamal, S. (2015). Event-Triggered Sliding Mode Control for Robust Stabilization of Linear Multivariable Systems. In: Yu, X., Önder Efe, M. (eds) Recent Advances in Sliding Modes: From Control to Intelligent Mechatronics. Studies in Systems, Decision and Control, vol 24. Springer, Cham. https://doi.org/10.1007/978-3-319-18290-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18290-2_8

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18289-6

  • Online ISBN: 978-3-319-18290-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics