Skip to main content

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 24))

Abstract

The interest into the unmanned aerial vehicles has largely increased recently. With the advances in technologies it has become possible to test efficiently and cost effectively different autonomous flight control concepts using small-scale aircrafts. In this work the stabilizing and trajectory tracking control problem of a quad-rotor helicopter using sliding mode controllers has been investigated. The well-known ability of the above control approach to stabilize under-actuated systems and to deal with existing nonlinear mismatched uncertainties in their dynamic models makes it a suitable choice for controlling rotorcrafts. The proposed method is based on the definition of several terminal attractors to establish certain relationships between variables to be maintained, thus allowing a designed continuous sliding mode controller to drive the system’s trajectory to a sliding surface in a finite time. Asymptotic stability of the system’s motion in the sliding mode is then achieved. The effectiveness of the adopted approach is demonstrated by the results from a simulated flight of an automatically controlled small-scale four-rotor helicopter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bouabdallah, S., North, A., Siegwart, R.: PID vs LQ control techniques applied to an indoor micro quadrotor. In: Proc. of Int. Conf. on Intelligent Robots and Systems, pp. 2451–2456 (2004)

    Google Scholar 

  2. Castillo, P., Lozano, R., Dzul, A.E.: Stabilization of a mini rotorcraft with four rotors. IEEE Control Syst. Mag. 25, 45–55 (2005)

    Article  MathSciNet  Google Scholar 

  3. Das, A., Lewis, F., Subbarao, K.: Backstepping approach for controlling a quadrotor using Lagrange form dynamics. Journal of Intell. Robot. Syst. 56, 127–151 (2009)

    Article  MATH  Google Scholar 

  4. Drakunov, S.V., Izosimov, D.B., Lukyanov, A.G., Utkin, V.A., Utkin, V.I.: Block control principle, Automation and Remote Control part. 1 51(5), 38–46, Automation and Remote Control part. 2 51(6), 20-31 (1990)

    Google Scholar 

  5. Esfandiary, F., Khalil, H.K.: Stability analysis of a continuous implementation of variable structure control. IEEE Transactions on Automatic Control 36(5), 616–619 (1991)

    Article  Google Scholar 

  6. Fridman, L.: Sliding mode enforcement after 1990: Main results and some open problems. In: Fridman, L., Moreno, J., Iriarte, R. (eds.) Sliding Modes. LNCIS, vol. 412, pp. 3–57. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  7. Greenand, J., Hedrick, J.K.: Nonlinear speed control for automotive engines. In: Proc. of 1990 American Control Conf., San Diego, CA, vol. 3, pp. 2891–2898 (1990)

    Google Scholar 

  8. Hamood, M.A., Akmeliawati, R., Leqowo, A.: Multiple-surface sliding mode control for 3DOF helicopter. In: Proc. of 4th Int. Conf. on Mechatronics (ICOM), Kuala Lumpur, Malaysia, May 17-19. ©2011 IEEE (2011) 978-1-61284-437-4/11

    Google Scholar 

  9. Hedrick, J.K., Yip, P.P.: Multiple sliding surface control: Theory and application. Journal of Dynamic Syst., Measurement, and Control 122(4), 586–593 (2000)

    Article  Google Scholar 

  10. Kim, H.J., Shim, D.H., Sastry, S.: Nonlinear model predictive tracking control for rotorcraft-based unmanned aerial vehicles. In: Proc. of the American Control Conference, Anchorage, AK, May 8-10, pp. 3576–3581 (2002)

    Google Scholar 

  11. Koshkouei, A.J., Mills, R.E., Zinober, A.S.I.: Adaptive backstepping control. In: Yu, X., Xu, J.-X. (eds.) Variable Structure Systems: Towards the 21st Century. LNCIS, vol. 274, pp. 128–153. Springer, Heidelberg (2002)

    Google Scholar 

  12. Krstic, M., Kanellakopoulos, I., Kokotovic, P.: Nonlinear and Adaptive Control Design. John Wiley & Sons, Inc., New York (1995)

    Google Scholar 

  13. Mokhtari, A., Benallegue, A., Daachi, B.: Robust feedback linearization and GH∞ controller for a quadrotor unmanned aerial vehicle. Journal of Electr. Eng. 57(1), 20–27 (2006)

    Google Scholar 

  14. Naidoo, Y., Stopforth, R., Bright, G.: Quad-rotor unmanned aerial vehicle helicopter modelling & control. Int. Journal of Adv. Robotic Systems 8(4), 139–149 (2011)

    Google Scholar 

  15. Shakev, N.G., Topalov, A.V., Shiev, K.B., Kaynak, O.: Stabilizing multiple sliding surface control of quad-rotor rotorcraft. In: Proc. of the 9th Asian Control Conference, ASCC 2013, Istanbul, Turkey, June 23-26. ©2013 IEEE (2013) 978-1-4673-5769-2/13

    Google Scholar 

  16. Shakev, N.G., Topalov, A.V., Kaynak, O., Shiev, K.B.: Comparative results on stabilization of the quad-rotor rotorcraft using bounded feedback controllers. Journal of Intell. Robot. Syst. 65, 389–408 (2012)

    Article  Google Scholar 

  17. Shtessel, Y.B., Buffington, J.M.: Continuous sliding mode control. In: Proc. of the American Control Conference, Philadelphia, Pennsylvania, USA, pp. 562–563 (1998)

    Google Scholar 

  18. Slotine, J., Li, W.: Applied Nonlinear Control. Prentice Hall, Englewood Cliffs (1991)

    Google Scholar 

  19. Won, M., Hedrick, J.K.: Multi-surface sliding control of a class of uncertain nonlinear systems. Int. Journal of Control 64(4), 693–706 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  20. Yang, C.-D., Liu, W.-H.: Nonlinear H∞ decoupling hover control of a helicopter with parameter uncertainties. In: Proc. of American Control Conference, Denver, Colorado, June 4-6, pp. 3454–3459 (2003)

    Google Scholar 

  21. Yu, X., Man, Z.: Model reference adaptive control systems with terminal sliding modes. Int. Journal of Control 64, 1165–1176 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  22. Zak, M.: Terminal attractors in neural networks. Neural Networks 2, 259–274 (1989)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikola G. Shakev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Shakev, N.G., Topalov, A.V. (2015). Continuous Sliding Mode Control of a Quadrotor. In: Yu, X., Önder Efe, M. (eds) Recent Advances in Sliding Modes: From Control to Intelligent Mechatronics. Studies in Systems, Decision and Control, vol 24. Springer, Cham. https://doi.org/10.1007/978-3-319-18290-2_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18290-2_21

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18289-6

  • Online ISBN: 978-3-319-18290-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics