Skip to main content

A Digital Signature Scheme Based on Two Hard Problems

  • Chapter
Computation, Cryptography, and Network Security

Abstract

In this paper we propose a signature scheme based on two intractable problems, namely the integer factorization problem and the discrete logarithm problem for elliptic curves. It is suitable for applications requiring long-term security and provides smaller signatures than the existing schemes based on the integer factorization and integer discrete logarithm problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Barreto, P.S.L., Galbraith, S.D., Ó’hÉigeartaigh, C., Scott, M.: Efficient pairing computation on supersingular Abelian varieties. Des. Codes Crypt. 42, 239–271 (2007)

    Article  MATH  Google Scholar 

  2. Biham, E., Boneh, D., Reingold, O.: Breaking generalized Diffie-Hellman is no easier than factoring. Inf. Proces. Lett. 70, 83–87 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  3. Boneh, D., Lynn, B., Shacham, H.: Short signatures from the Weil pairing. Lect. Notes Comput. Sci. 2248, 514–532 (2001)

    Article  MathSciNet  Google Scholar 

  4. Bróker, R.: Constructing supersingular elliptic curves. J. Combin. Number Theory 1(3), 269–273 (2009)

    Google Scholar 

  5. Buchmann, J., May, A., Vollmer, U.: Perspectives for cryptographic long term security. Commun. ACM 49(9), 50–55 (2006)

    Article  Google Scholar 

  6. Chen, T.-H., Lee, W.-B., Horng, G.: Remarks on some signature schemes based on factoring and discrete logarithms. Appl. Math. Comput. 169, 1070–1075 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Galbraith, S.D., Rotger, V.: Easy decision Diffie-Hellman groups. LMS J. Comput. Math. 7, 201–218 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  8. Girault, M., Poupard, G., Stern, J.: Global Payment System (GPS): un protocole de signature à la volée. In: Proceedings of Trusting Electronic Trade, 7–9 June 1999

    Google Scholar 

  9. Harn, L.: Enhancing the security of ElGamal signature scheme. IEE Proc. Comput. Digital 142(5), 376 (1995)

    Article  MATH  Google Scholar 

  10. Hess, F., Smart, N.P., Vercauteren, F.: The Eta pairing revisited. IEEE Trans. Inf. Theory 52(10), 4595–4602 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Icart, T.: How to Hash into elliptic curves. In: CRYPTO 2009. Lecture Notes in Computer Science, vol. 5677, pp. 303–316. Springer, New York (2009)

    Google Scholar 

  12. Ismail, E.S., Tahat, N.M.F., Ahmad, R.R.: A new digital signature scheme based on factoring and discrete logarithms. J. Math. Stat. 4(4), 22–225 (2008)

    MathSciNet  Google Scholar 

  13. Ismail, E.S., Tahat, N.M.F.: A new signature scheme based on multiple hard number theoretic problems. ISRN Commun. Netw. 2011, 3 pp. (2011). Article ID 231649. http://dx.doi.org/10.5402/2011/231649

  14. Joux, A.: The weil and tate pairings as building blocks for public key cryptosystems (Survey). In: ANTS 2002. Lecture Notes in Computer Science, vol. 2369, pp. 20–32. Springer, Berlin (2001)

    Google Scholar 

  15. Karagiorgos, G., Poulakis, D.: Efficient algorithms for the basis of finite Abelian groups. Discret. Math. Algoritm. Appl. 3(4), 537–552 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  16. Lee, N.Y.: Security of Shao’s signature schemes based on factoring and discrete logarithms. IEE Proc. Comput. Digital Tech. 146(2), 119–121 (1999)

    Article  Google Scholar 

  17. Lee, N.Y., Hwang, T.: The security of He and Kiesler’s signature scheme. IEE Proc. Comput. Digital Tech. 142(5), 370–372 (1995)

    Article  MATH  Google Scholar 

  18. Li, J., Xiao, G.: Remarks on new signature scheme based on two hard problems. Electron. Lett. 34(25), 2401 (1998)

    Article  Google Scholar 

  19. Madhur, K., Yadav, J.S., Vijay, A.: Modified ElGamal over RSA Digital Signature Algorithm (MERDSA). Int. J. Adv. Res. Comput. Sci. Softw. Eng. 2(8), 289–293 (2012)

    Google Scholar 

  20. Maseberg, J.S.: Fail-safe konzept fur public-key infrastrukturen. Thesis, Technische Universitat Darmstadt (2002)

    Google Scholar 

  21. McCurley, K.S.: A key distibution system equivalent to factoring. J. Cryptol. 1, 95–105 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  22. Shao, Z.: Security of a new digital signature scheme based on factoring and discrete logarithms. Int. J. Comput. Math. 82(10), 1215–1219 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  23. Verheul, E.: Evidence that XTR is more secure than supersingular elliptic curve cryptosystems. In: Advances in Cryptology-Eurocrypt ’01. Lecture Notes in Computer Science, vol. 2045, pp. 195–210. Springer, New York (2001)

    Google Scholar 

  24. Verma, S., Sharma, B.K.: A new digital signature scheme based on two hard problems. Int. J. Pure Appl. Sci. Technol. 5(2), 55–59 (2011)

    Google Scholar 

  25. Vishnoi, S., Shrivastava, V.: A new digital signature algorithm based on factorization and discrete logarithm problem. Int. J. Comput. Trends Tech. 3(4), 653–657 (2012)

    Google Scholar 

  26. Vladut, S.: Cyclicity statistics for elliptic curves over finite fields. Finite Fields Appl. 5(1), 13–25 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  27. Wei, S.: A new digital signature scheme based on factoring and discrete logarithms. In: Progress on Cryptography. Kluwer International Series in Engineering and Computer Science, vol. 769, pp. 107–111. Kluwer Academic Publishers, Boston (2004)

    Google Scholar 

  28. Zhao, C.-A., Xie, D., Zhang, F., Zhang, J., Chen, B.-L.: Computing bilinear pairing on elliptic curves with automorphisms. Des. Codes Crypt. 58, 35–44 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitrios Poulakis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Poulakis, D., Rolland, R. (2015). A Digital Signature Scheme Based on Two Hard Problems. In: Daras, N., Rassias, M. (eds) Computation, Cryptography, and Network Security. Springer, Cham. https://doi.org/10.1007/978-3-319-18275-9_19

Download citation

Publish with us

Policies and ethics