Spatial Interpolation of Streaming Geosensor Network Data in the RISER System

  • Xu ZhongEmail author
  • Allison Kealy
  • Guy Sharon
  • Matt Duckham
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9080)


Managing the data generated by emerging spatiotemporal data sources, such as geosensor networks, presents a growing challenge to traditional, offline GIS architectures. This paper explores the development of an end-to-end system for near real-time monitoring of environmental variables related to wildfire hazard, called RISER. The system is built upon a geosensor network and web-GIS technologies, connected by a stream-processing system. Aside from exploring the system architecture, this paper focuses specifically on the important role of stream processing as a bridge between data capture and web GIS, and as a spatial analysis engine. The paper highlights the compromise between efficiency and accuracy in spatiotemporal stream processing that must often be struck in the stream operator design. Using the specific example of spatial interpolation operators, the impact of changes to the configurations of spatial and temporal windows on the accuracy and efficiency of different spatial interpolation methods is evaluated.


Sensor Node Ordinary Kriging Online Algorithm Stream Processing Inverse Distance Weighting 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Albers, S.: Online algorithms: A survey. Mathematical Programming 97(1–2), 3–26 (2003)zbMATHMathSciNetGoogle Scholar
  2. 2.
    Ali, M.H., Aref, W.G., Kamel, I.: Scalability management in sensor-network phenomenabases. In: 18th International Conference on Scientific and Statistical Database Management, 2006, pp. 91–100. IEEE (2006)Google Scholar
  3. 3.
    Ali, M.H., Mokbel, M.F., Aref, W.G.: Phenomenon-aware stream query processing. In: 2007 International Conference on Mobile Data Management, pp. 8–15. IEEE (2007)Google Scholar
  4. 4.
    Ali, M.H., Mokbel, M.F., Aref, W.G., Kamel, I.: Detection and tracking of discrete phenomena in sensor-network databases. In: SSDBM, pp. 163–172 (2005)Google Scholar
  5. 5.
    Armstrong, M.P., Marciano, R.J.: Local interpolation using a distributed parallel supercomputer. International Journal of Geographical Information Systems 10(6), 713–729 (1996)CrossRefGoogle Scholar
  6. 6.
    Cramer, B.E., Armstrong, M.P.: An evaluation of domain decomposition strategies for parallel spatial interpolation of surfaces. Geographical Analysis 31(2), 148–168 (1999)CrossRefGoogle Scholar
  7. 7.
    Ding, Y., Densham, P.J.: Spatial strategies for parallel spatial modelling. International Journal of Geographical Information Systems 10(6), 669–698 (1996)CrossRefGoogle Scholar
  8. 8.
    Duchon, J.: Splines minimizing rotation-invariant semi-norms in Sobolev spaces. In: Constructive theory of functions of several variables, pp. 85–100. Springer (1977)Google Scholar
  9. 9.
    Guan, Q., Kyriakidis, P.C., Goodchild, M.F.: A parallel computing approach to fast geostatistical areal interpolation. International Journal of Geographical Information Science 25(8), 1241–1267 (2011)CrossRefGoogle Scholar
  10. 10.
    Hawick, K.A., Coddington, P.D., James, H.A.: Distributed frameworks and parallel algorithms for processing large-scale geographic data. Parallel Computing 29(10), 1297–1333 (2003)CrossRefGoogle Scholar
  11. 11.
    Huang, Q., Yang, C.: Optimizing grid computing configuration and scheduling for geospatial analysis: An example with interpolating DEM. Computers and Geosciences 37(2), 165–176 (2011)CrossRefGoogle Scholar
  12. 12.
    Jin, R., Goswami, A., Agrawal, G.: Fast and exact out-of-core and distributed \(k\)-means clustering. Knowledge and Information Systems 10(1), 17–40 (2006)CrossRefGoogle Scholar
  13. 13.
    Kamel, I., Al Aghbari, Z., Awad, T.: Mg-join: Detecting phenomena and their correlation in high dimensional data streams. Distributed and Parallel Databases 28(1), 67–92 (2010)CrossRefGoogle Scholar
  14. 14.
    Kidner, D.B., Rallings, P.J., Ware, J.A.: Parallel processing for terrain analysis in GIS: Visibility as a case study. GeoInformatica 1(2), 183–207 (1997)CrossRefGoogle Scholar
  15. 15.
    Nittel, S., Leung, K.T.: Parallelizing clustering of geoscientific data sets using data streams. In: Proceedings of the 16th International Conference on Scientific and Statistical Database Management, 2004, pp. 73–84. IEEE (2004)Google Scholar
  16. 16.
    Nittel, S., Leung, K.T., Braverman, A.: Scaling clustering algorithms for massive data sets using data streams. In: ICDE, vol. 4, p. 830 (2004)Google Scholar
  17. 17.
    Nittel, S., Whittier, J.C., Liang, Q.: Real-time spatial interpolation of continuous phenomena using mobile sensor data streams. In: Proceedings of the 20th International Conference on Advances in Geographic Information Systems, pp. 530–533. ACM (2012)Google Scholar
  18. 18.
    Oliver, M.A., Webster, R.: Kriging: A method of interpolation for geographical information systems. International Journal of Geographical Information System 4(3), 313–332 (1990)CrossRefGoogle Scholar
  19. 19.
    Palpanas, T.: Real-time data analytics in sensor networks. In: Managing and Mining Sensor Data, pp. 173–210. Springer (2013)Google Scholar
  20. 20.
    Patroumpas, K., Sellis, T.: Semantics of spatially-aware windows over streaming moving objects. In: 2007 International Conference on Mobile Data Management, pp. 52–59. IEEE (2007)Google Scholar
  21. 21.
    Potamias, M., Patroumpas, K., Sellis, T.: Sampling trajectory streams with spatiotemporal criteria. In: 18th International Conference on Scientific and Statistical Database Management, 2006, pp. 275–284. IEEE (2006)Google Scholar
  22. 22.
    Tolhurst, K., Shields, B., Chong, D.: Phoenix: development and application of a bushfire risk management tool. Emergency Management Australia 23(4), 47–54 (2008)Google Scholar
  23. 23.
    Trajcevski, G., Cao, H., Scheuermanny, P., Wolfsonz, O., Vaccaro, D.: On-line data reduction and the quality of history in moving objects databases. In: Proceedings of the 5th ACM International Workshop on Data Engineering for Wireless and Mobile Access, pp. 19–26. ACM (2006)Google Scholar
  24. 24.
    Wang, S., Armstrong, M.P.: A quadtree approach to domain decomposition for spatial interpolation in grid computing environments. Parallel Computing 29(10), 1481–1504 (2003)CrossRefGoogle Scholar
  25. 25.
    Wolfson, O., Xu, B., Chamberlain, S., Jiang, L.: Moving objects databases: issues and solutions. In: Proc. Tenth International Conference on Scientific and Statistical Database Management (SSDM), pp. 111–122 (1998)Google Scholar
  26. 26.
    Worboys, M.: A unified model of spatial and temporal information. Computer Journal 8(4), 26–34 (1994)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Xu Zhong
    • 1
    Email author
  • Allison Kealy
    • 1
  • Guy Sharon
    • 2
  • Matt Duckham
    • 1
  1. 1.Department of Infrastructure EngineeringThe University of MelbourneMelbourneAustralia
  2. 2.IBM Research AustraliaCarltonAustralia

Personalised recommendations