Advertisement

Muscle Lesions

  • Ian F. R. BeasleyEmail author

Abstract

Football is a contact, multi-sprint and recovery sport. Muscle injuries are the most common type encountered [1, 2] and can be as a result of contusions, muscle tears, lacerations, ischaemia and drug toxicity. It is imperative that when eliciting a history of this type of injury, one keeps an open mind as to any underlying contribution any of these etiological factors may offer.

Keywords

Satellite Cell Compartment Syndrome Muscle Injury Eccentric Contraction Myositis Ossificans 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Ekstrand J et al (2013) Fewer ligament injuries but no preventive effect on muscle injuries and severe injuries: an 11-year follow-up of the UEFA Champions League injury study. Br J Sports Med 47:732–737CrossRefPubMedGoogle Scholar
  2. 2.
    Drawer S et al (2002) Evaluating the level of injury in English professional football using a risk based assessment process. Br J Sports Med 36:446–451CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Morgan DL, Allen DG (1999) Early events in stretch-induced muscle damage. J Appl Physiol. 87:2007–2015Google Scholar
  4. 4.
    Proske U, Morgan DL (2001) Muscle damage from eccentric exercise: mechanism, mechanical signs, adaptation and clinical applications. J Physiol 537(Pt 2):333–345 Google Scholar
  5. 5.
    Blades of gory: the story of ‘lethal’ hybrid boots that caused injury to Wayne Rooney. The independent, 27.09.13Google Scholar
  6. 6.
    Micheli LJ (ed) Encyclopaedia of sports medicine, pp 476–477. ISBN 978.1-4129-6115-8Google Scholar
  7. 7.
    Valiyil R, Christopher-Stine L (2010) Drug-related myopathies of which the clinician should be aware. Curr Rheumatol Rep 12(3):213–220CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Makins GH (1911) Traumatic Myositis Ossificans. Proc R Soc Med 4(Surg Sect):133–142Google Scholar
  9. 9.
    Chumanov ES et al (2011) Hamstring musculotendon dynamics during stance and swing phases of high-speed running. Med Sci Sports Exerc 43:525–532CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Chumanov ES et al (2007) The effect of speed and influence of individual muscles on hamstring mechanics during the swing phase of sprinting. J Biomech 40:3555–3556CrossRefPubMedGoogle Scholar
  11. 11.
    Chumanov E et al (2012) Hamstrings are most susceptible to injury during the late swing phase of sprinting. Br J Sports Med 46:90CrossRefPubMedGoogle Scholar
  12. 12.
    Hölmich P et al (2014) Incidence and clinical presentation of groin Injuries in sub-elite male soccer. Br J Sports Med 48:1245–1250CrossRefPubMedGoogle Scholar
  13. 13.
    Werner J et al (2009) UEFA injury study: a prospective study of hip and groin injuries in professional football over seven consecutive seasons. Br J Sports Med 43:1036–1040CrossRefPubMedGoogle Scholar
  14. 14.
    Garrett WE (1996) Muscle strain injuries. Am J Sports Med 24:S2–S8CrossRefPubMedGoogle Scholar
  15. 15.
    Mendiguchia J (2013) Rectus femoris muscle injuries in football: a clinically relevant review of mechanisms of injury, risk factors and preventive strategies. Br J Sports Med 47(6):359–366CrossRefPubMedGoogle Scholar
  16. 16.
    Balius R et al (2009) Central aponeurosis tears of the rectus femoris practical sonographic prognosis. Br J Sports Med 43:818–824CrossRefPubMedGoogle Scholar
  17. 17.
    Dixon JB (2009) Gastrocnemius vs. soleus strain: how to differentiate and deal with calf muscle injuries. Curr Rev Musculoskelet Med 2(2):74–77CrossRefGoogle Scholar
  18. 18.
    Ekstrand J et al (2011) Epidemiology of muscle injuries in professional football. Am J Sports Med 39(6):1226–1232CrossRefPubMedGoogle Scholar
  19. 19.
    Hagglund M et al (2006) Previous injury as a risk factor for injury in elite football: a prospective study over two consecutive seasons. Br J Sports Med 40:767–772CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Hagglund M et al (2013) Risk factors for lower extremity muscle injury in professional soccer:the UEFA injury study. Am J Sports Med 41(2):327–335CrossRefPubMedGoogle Scholar
  21. 21.
    Hughes C, Hasselman CT, Best TM et al (1995) Incomplete, intrasubstance strain injuries of the rectus femoris muscle. Am J Sports Med 23:500–506CrossRefPubMedGoogle Scholar
  22. 22.
    Orchard J (2014) What role for MRI in hamstring strains? An argument for a difference between recreational and professional athletes. Br J Sports Med 48(18):1337–1338CrossRefPubMedGoogle Scholar
  23. 23.
    Moen MH et al (2014) Predicting return to play after hamstring injuries. Br J Sports Med 48:1358–1363CrossRefPubMedGoogle Scholar
  24. 24.
    Hallen A, Ekstrand J (2014) Return to play following muscle injuries in professional footballers. J Sports Sci 32:1229–1236CrossRefPubMedGoogle Scholar
  25. 25.
    Pollock N et al (2014) British athletics muscle injury classification: a new grading system. Br J Sports Med 48:1347–1351CrossRefPubMedGoogle Scholar
  26. 26.
    Mueller-Wohlfahrt H-W, Haensel L, Mithoefer K et al (2013) Terminology and classification of muscle injuries in sport: the Munich consensus statement. Br J Sports Med 47:342–350CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Chan O, Del Buono A, Best TM et al (2012) Acute muscle strain injuries: a proposed new classification system. Knee Surg Sports Traumatol Arthrosc 20:2356–2362CrossRefPubMedGoogle Scholar
  28. 28.
    Verrall G (2013) Aspetar sports. Med J 47:342–350Google Scholar
  29. 29.
    Hamilton B et al (2014) Excellent reliability for MRI grading and prognostic parameters in acute hamstring injuries. Br J Sports Med 48:1385–1387CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Bleakly CM et al (2012) PRICE needs updating, should we call the POLICE? Br J Sports Med 46:220–221CrossRefGoogle Scholar
  31. 31.
    Meeusen R, Lievens P (1986) The use of cryotherapy in sports injuries. Sports Med 3(6):398–414, SpringerCrossRefPubMedGoogle Scholar
  32. 32.
    Bleakley CM et al (2012) Cooling an acute muscle injury: can basic scientific theory translate into the clinical setting? Br J Sports Med 46:296–298CrossRefPubMedGoogle Scholar
  33. 33.
    Bizzini M (2012) Ice and modern sports physiotherapy: still cool? Br J Sports Med 46:219CrossRefGoogle Scholar
  34. 34.
    Kraemer WJ (2004) Compression in the treatment of acute muscle injuries in sport. Int Sport Med J 5(3):200–208Google Scholar
  35. 35.
    Lee P et al (2011) Our experience on Actovegin, is it cutting edge? Int J Sports Med 32(4):237–241.doi: 10.1055/s-0030-1269862, Epub 2011 Jan 26CrossRefPubMedGoogle Scholar
  36. 36.
    Hamilton B, Robinson M (2013) Aspetar sports. Med J 462–266Google Scholar
  37. 37.
    Reurink G et al (2012) Therapeutic interventions for acute hamstring injuries: a systematic review. Br J Sports Med 46:103–109CrossRefPubMedGoogle Scholar
  38. 38.
    Lars E, Kathrin S, Joseph A, Eduardo A et al (2010) IOC consensus paper on the use of platelet-rich plasma in sports medicine. Br J Sports Med 44:1072–1081Google Scholar
  39. 39.
    Reurink G (2014) Platelet-rich plasma injections in acute muscle injury. N Engl J Med 370(26):2546–2547CrossRefPubMedGoogle Scholar
  40. 40.
    Tscholl P (2008) The use of medication and nutritional supplements during FIFA World Cups 2002 and 2006. Br J Sports Med 42:725–730CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Mackey A et al (2012) Rehabilitation of muscle after injury – the role of anti-inflammatory drugs. Scand J Med Sci Sports 22(4):e8–e14CrossRefPubMedGoogle Scholar
  42. 42.
    de Vos R-J (2014) Knowledge is only rumour, until it is in the muscle. Br J Sports Med 48(18):1335CrossRefPubMedGoogle Scholar
  43. 43.
    Relaix F, Zammit PS (2012) Satellite cells are essential for skeletal muscle regeneration: the cell on the edge returns centre stage. Development 139(16):2845–2856CrossRefPubMedGoogle Scholar
  44. 44.
    Dreyer HC et al (2006) Satellite cell numbers in young and older men 24 hours after eccentric exercise. Muscle Nerve 33(2):242–253CrossRefPubMedGoogle Scholar
  45. 45.
    Parise G et al (2008) Muscle satellite cell and atypical myogenic progenitor response following exercise. Muscle Nerve 37(5):611–619CrossRefPubMedGoogle Scholar
  46. 46.
    Ekstrand J et al (2012) Hamstring muscle injuries in professional football. Br J Sports Med 46:112–117CrossRefPubMedGoogle Scholar
  47. 47.
    Delvaux F et al (2013) Return to play criteria after hamstring injury: actual medical practice in professional soccer teams. Br J Sports Med 47:e3CrossRefGoogle Scholar
  48. 48.
    Tol JL et al (2014) At return to play following hamstring injury the majority of professional football players have residual isokinetic deficits. Br J Sports Med 48:1364–1369CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Reurink G et al (2014) MRI observations at return to play of clinically recovered hamstring injuries. Br J Sports Med 48:1370–1376CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    De Vos R-J et al (2014) Clinical findings just after return to play predict hamstring re-injury, but baseline MRI findings do not. Br J Sports Med 48:1377–1384CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Medical ServicesThe English Football AssociationHarrowUnited Kingdom

Personalised recommendations