Ankle Osteochondral Lesions

  • Sandro GianniniEmail author
  • Roberto Buda
  • Laura Ramponi
  • Francesco Castagnini
  • Silvio Caravelli
  • Giuseppe Gianluca Costa
  • Francesca Vannini


Osteochondral lesion (OCL) of the ankle joint is an injury involving the chondral layer and, secondarily, the subchondral bone, usually traumatic in etiology. The sprains and the mechanism of action may strongly influence the OCL pattern and the subsequent prognosis. OCL is frequently symptomatic, causing a mild persistent pain in chronic lesions. MRI is the most reliable diagnostic tool for preoperative evaluation. Athletes require effective treatments for OCL, with a rapid sport comeback and durable chondral restoration. This aim can be achieved only through regenerative techniques. These procedures, due to biological reasons, need longer time to heal. Although clear guidelines for OCL in athletes do not exist, Giannini’s classification (TAB 1), relying on the area and the depth of the lesion, could be successfully proposed. Conservative treatment should be suggested only in very small, not painful OCL. Debridement in small acute OCL and fixation in larger defects are two effective procedures. Microfractures could be advised in symptomatic, small chronic OCL (1,5–2 cm2). Larger chronic lesions may pose a serious challenge: microfractures may not achieve long-term, satisfying results. If regenerative techniques are suggested, athletes should be clearly warned of the longer times needed for rehabilitation after such procedures.


Ankle Regenerative technique Osteochondral lesions Arthroscopy Athletes Football 


  1. 1.
    van Dijk CN, Reilingh ML, Zengerink M et al (2010) Osteochondral defects in the ankle: why painful? Knee Surg Sports Traumatol Arthrosc 18(5):570–580. doi: 10.1007/s00167-010-1064-x CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Schachter AK, Chen AL, Reddy PD, Tejwani NC (2005) Osteochondral lesions of the talus. J Am Acad Orthop Surg 13(3):152–158CrossRefPubMedGoogle Scholar
  3. 3.
    Saxena A, Eakin C (2007) Articular talar injuries in athletes: results of microfracture and autogenous bone graft. Am J Sports Med 35(10):1680–1687CrossRefPubMedGoogle Scholar
  4. 4.
    Choi WJ, Park KK, Kim BS, Lee JW (2009) Osteochondral lesion of the talus: is there a critical defect size for poor outcome? Am J Sports Med 37(10):1974–1980. doi: 10.1177/0363546509335765 CrossRefPubMedGoogle Scholar
  5. 5.
    Orr JD, Dutton JR, Fowler JT (2012) Anatomic location and morphology of symptomatic, operatively treated osteochondral lesions of the talus. Foot Ankle Int 33(12):1051–1057. doi: 10.3113/FAI.2012.1051 CrossRefPubMedGoogle Scholar
  6. 6.
    Murawski CD, Kennedy JG (2013) Operative treatment of osteochondral lesions of the talus. J Bone Joint Surg Am 95(11):1045–1054. doi: 10.2106/JBJS.L.00773 CrossRefPubMedGoogle Scholar
  7. 7.
    Talusan PG, Milewski MD, Toy JO et al (2014) Osteochondritis dissecans of the talus: diagnosis and treatment in athletes. Clin Sports Med 33(2):267–284. doi: 10.1016/j.csm.2014.01.003 CrossRefPubMedGoogle Scholar
  8. 8.
    Giza E, Fuller C, Junge A, Dvorak J (2003) Mechanisms of foot and ankle injuries in soccer. Am J Sports Med 31:550–554PubMedGoogle Scholar
  9. 9.
    Lees A, Nolan L (1998) The biomechanics of soccer: a review. J Sports Sci 16:211–234CrossRefPubMedGoogle Scholar
  10. 10.
    Self BP, Paine D (2001) Ankle biomechanics during four landing techniques. Med Sci Sports Exerc 33:1338–1344CrossRefPubMedGoogle Scholar
  11. 11.
    Canale ST, Belding RH (1980) Osteochondral lesions of the talus. J Bone Joint Surg Am 62(1):97–102PubMedGoogle Scholar
  12. 12.
    Wong P, Hong Y (2005) Soccer injury in the lower extremities. Br J Sports Med 39:473–482CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Tol JL, Slim E, van Soest AJ, van Dijk CN (2002) The relationship of the kicking action in soccer and anterior ankle impingement syndrome. A biomechanical analysis. Am J Sports Med 30:45–50PubMedGoogle Scholar
  14. 14.
    Robinson P, White LM (2002) Soft-tissue and osseous impingement syndromes of the ankle: role of imaging in diagnosis and management. Radiographics 22:1457–1469, discussion 1470–1471CrossRefPubMedGoogle Scholar
  15. 15.
    Hawkins RD, Hulse MA, Wilkinson C et al (2001) The association football medical research programme: an audit of injuries in professional football. Br J Sports Med 35:43–47CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Hintermann B, Boss A, Schafer D (2002) Arthroscopic findings in patients with chronic ankle instability. Am J Sports Med 30:402–409PubMedGoogle Scholar
  17. 17.
    Chomiak J, Junge A, Peterson L, Dvorak J (2000) Severe injuries in football players. Influencing factors. Am J Sports Med 28(5 suppl):S58–S68CrossRefPubMedGoogle Scholar
  18. 18.
    van Dijk CN, Reilingh ML, Zengerink M et al (2010) The natural history of osteochondral lesions in the ankle. Instr Course Lect 59:375–386PubMedGoogle Scholar
  19. 19.
    Koch S, Kampen WU, Laprell H (1997) Cartilage and bone morphology in osteochondritis dissecans. Knee Surg Sports Traumatol Arthrosc 5(1):42–45CrossRefPubMedGoogle Scholar
  20. 20.
    Johnson DL, Urban WP Jr, Caborn DN et al (1998) Articular cartilage changes seen with magnetic resonance imaging-detected bone bruises associated with acute anterior cruciate ligament rupture. Am J Sports Med 26(3):409–414PubMedGoogle Scholar
  21. 21.
    Guettler JH, Demetropoulos CK, Yang KH et al (2004) Osteochondral defects in the human knee: influence of defect size on cartilage rim stress and load redistribution to surrounding cartilage. Am J Sports Med 32(6):1451–1458CrossRefPubMedGoogle Scholar
  22. 22.
    Dheer S, Khan M, Zoga AC et al (2012) Limitations of radiographs in evaluating non-displaced osteochondral lesions of the talus. Skeletal Radiol 4:415–421CrossRefGoogle Scholar
  23. 23.
    Navid DO, Myerson MS (2002) Approach alternatives for treatment of osteochondral lesions of the talus. Foot Ankle Clin 7(3):635–649CrossRefPubMedGoogle Scholar
  24. 24.
    Ferkel RD, Flannigan BD, Elkins BS (1991) Magnetic resonance imaging of the foot and ankle: correlation of normal anatomy with pathologic conditions. Foot Ankle 11:289–305CrossRefPubMedGoogle Scholar
  25. 25.
    Bae S, Lee HK, Lee K et al (2012) Comparison of arthroscopic and magnetic resonance imaging findings in osteochondral lesions of the talus. Foot Ankle Int 33(12):1058–1062. doi: 10.3113/FAI.2012.1058 CrossRefPubMedGoogle Scholar
  26. 26.
    Verhagen RA, Struijs PA, Bossuyt PM et al (2003) Systematic review of treatment strategies for osteochondral defects of the talar dome. Foot Ankle Clin 8(2):233–242, viii-ixCrossRefPubMedGoogle Scholar
  27. 27.
    Taranow WS, Bisignani GA, Towers JD et al (1999) Retrograde drilling of osteochondral lesions of the medial talar dome. Foot Ankle Int 20:474–480CrossRefPubMedGoogle Scholar
  28. 28.
    Giannini S, Buda R, Faldini C et al (2005) Surgical treatment of osteochondral lesions of the talus in young active patients. J Bone Joint Surg Am 87(Suppl 2):28–41CrossRefPubMedGoogle Scholar
  29. 29.
    Badekas T, Takvorian M, Souras N (2013) Treatment principles for osteochondral lesions in foot and ankle. Int Orthop 37(9):1697–1706. doi: 10.1007/s00264-013-2076-1 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Liu W, Liu F, Zhao W et al (2011) Osteochondral autograft transplantation for acute osteochondral fractures associated with an ankle fracture. Foot Ankle Int 32(4):437–442. doi: 10.3113/FAI.2011.0437 CrossRefPubMedGoogle Scholar
  31. 31.
    Hangody L (2003) The mosaicplasty technique for osteochondral lesions of the talus. Foot Ankle Clin 8(2):259–273CrossRefPubMedGoogle Scholar
  32. 32.
    Mei-Dan O, Carmont MR, Laver L et al (2012) Platelet-rich plasma or hyaluronate in the management of osteochondral lesions of the talus. Am J Sports Med 40(3):534–541. doi: 10.1177/0363546511431238 CrossRefPubMedGoogle Scholar
  33. 33.
    Giannini S, Vannini F (2004) Operative treatment of osteochondral lesions of the talar dome: current concepts review. Foot Ankle Int 25(3):168–175PubMedGoogle Scholar
  34. 34.
    Ventura A, Terzaghi C, Legnani C et al (2013) Treatment of post-traumatic osteochondral lesions of the talus: a four-step approach. Knee Surg Sports Traumatol Arthrosc 21(6):1245–1250. doi: 10.1007/s00167-012-2028-0 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Yoshimura I, Kanazawa K, Takeyama A et al (2013) Arthroscopic bone marrow stimulation techniques for osteochondral lesions of the talus: prognostic factors for small lesions. Am J Sports Med 41(3):528–534. doi: 10.1177/0363546512472979 CrossRefPubMedGoogle Scholar
  36. 36.
    Hangody L, Dobos J, Baló E et al (2010) Clinical experiences with autologous osteochondral mosaicplasty in an athletic population: a 17-year prospective multicenter study. Am J Sports Med 38(6):1125–1133. doi: 10.1177/0363546509360405 CrossRefPubMedGoogle Scholar
  37. 37.
    Niemeyer P, Salzmann G, Schmal H et al (2012) Autologous chondrocyte implantation for the treatment of chondral and osteochondral defects of the talus: a meta-analysis of available evidence. Knee Surg Sports Traumatol Arthrosc 20(9):1696–1703. doi: 10.1007/s00167-011-1729-0 CrossRefPubMedGoogle Scholar
  38. 38.
    Giannini S, Buda R, Ruffilli A et al (2014) Arthroscopic autologous chondrocyte implantation in the ankle joint. Knee Surg Sports Traumatol Arthrosc 22(6):1311–1319. doi: 10.1007/s00167-013-2640-7 CrossRefPubMedGoogle Scholar
  39. 39.
    Battaglia M, Vannini F, Buda R et al (2011) Arthroscopic autologous chondrocyte implantation in osteochondral lesions of the talus: mid-term T2-mapping MRI evaluation. Knee Surg Sports Traumatol Arthrosc 19(8):1376–1384. doi: 10.1007/s00167-011-1509-x CrossRefPubMedGoogle Scholar
  40. 40.
    Giannini S, Buda R, Battaglia M et al (2013) One-step repair in talar osteochondral lesions: 4-year clinical results and t2-mapping capability in outcome prediction. Am J Sports Med 41(3):511–518. doi: 10.1177/0363546512467622 CrossRefPubMedGoogle Scholar
  41. 41.
    van Eekeren IC, Reilingh ML, van Dijk CN (2012) Rehabilitation and return-to-sports activity after debridement and bone marrow stimulation of osteochondral talar defects. Sports Med 42(10):857–870. doi: 10.2165/11635420-000000000-00000 PubMedGoogle Scholar
  42. 42.
    Lee DH, Lee KB, Jung ST (2012) Comparison of early versus delayed weightbearing outcomes after microfracture for small to midsized osteochondral lesions of the talus. Am J Sports Med 40(9):2023–2028. doi: 10.1177/0363546512455316 CrossRefPubMedGoogle Scholar
  43. 43.
    Nho SJ, Pensak MJ, Seigerman DA et al (2010) Rehabilitation after autologous chondrocyte implantation in athletes. Clin Sports Med 29(2):267–282. doi: 10.1016/j.csm.2009.12.004, viiiCrossRefPubMedGoogle Scholar
  44. 44.
    Giannini S, Buda R, Cavallo M, Ruffilli A, Cenacchi A, Cavallo C, Vannini F (2010) Cartilage repair evolution in post-traumatic osteochondral lesions of the talus: from open field autologous chondrocyte to bone-marrow-derived cells transplantation. Injury 41(11):1196–1203. doi: 10.1016/j.injury.2010.09.028, Epub 2010 Oct 8CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Sandro Giannini
    • 1
    • 2
    Email author
  • Roberto Buda
    • 1
    • 2
  • Laura Ramponi
    • 2
  • Francesco Castagnini
    • 2
  • Silvio Caravelli
    • 2
  • Giuseppe Gianluca Costa
    • 2
  • Francesca Vannini
    • 2
  1. 1.Orthopaedics and TraumatologyUniversity of BolognaBolognaItaly
  2. 2.I ClinicRizzoli Orthopaedic InstituteBolognaItaly

Personalised recommendations