Skip to main content

Microstructure in Plasticity, a Comparison between Theory and Experiment

  • Chapter
Analysis and Computation of Microstructure in Finite Plasticity

Part of the book series: Lecture Notes in Applied and Computational Mechanics ((LNACM,volume 78))

Abstract

We review aspects of pattern formation in plastically deformed single crystals, in particular as described in the investigation of a copper single crystal shear experiment in [DDMR09]. In this experiment, the specimen showed a band-like microstructure consisting of alternating crystal orientations. Such a formation of microstructure is often linked to a lack of convexity in the free energy describing the system. The specific parameters of the observed bands, namely the relative crystal orientation as well as the normal direction of the band layering, are thus compared to the predictions of the theory of kinematically compatible microstructure oscillating between low-energy states of the non-convex energy. We conclude that this theory is suitable to describe the experimentally observed band-like structure. Furthermore, we link these findings to the models used in studies of relaxation and evolution of microstructure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albin, N., Conti, S., Dolzmann, G.: Infinite-order laminates in a model in crystal plasticity. Proc. Roy. Soc. Edinburgh Sect. A 139(4), 685–708 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  2. Anguige, K., Dondl, P.W.: Relaxation of the single-slip condition in strain-gradient plasticity. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 470(2169) (2014)

    Google Scholar 

  3. Bay, B., Hansen, N., Hughes, D., Kuhlmann-Wilsdorf, D.: Overview no-96 – evolution of FCC deformation structures in polyslip. Acta Metallurgica et Materialia 40(2), 205–219 (1992)

    Article  Google Scholar 

  4. Ball, J.M., James, R.D.: Fine phase mixtures as minimizers of energy. Arch. Rational Mech. Anal. 100(1), 13–52 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  5. Conti, S., Dolzmann, G., Klust, C.: Relaxation of a class of variational models in crystal plasticity. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 465(2106), 1735–1742 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  6. Conti, S., Dolzmann, G., Kreisbeck, C.: Asymptotic behavior of crystal plasticity with one slip system in the limit of rigid elasticity. SIAM J. Math. Anal. 43(5), 2337–2353 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  7. Conti, S., Dolzmann, G., Kreisbeck, C.: Relaxation and microstructure in a model for finite crystal plasticity with one slip system in three dimensions. Discrete Contin. Dyn. Syst. Ser. S 6(1), 1–16 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  8. Conti, S., Dolzmann, G., Kreisbeck, C.: Relaxation of a model in finite plasticity with two slip systems. Math. Models Methods Appl. Sci. 23(11), 2111–2128 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  9. Cermelli, P., Gurtin, M.E.: On the characterization of geometrically necessary dislocations in finite plasticity. Journal of the Mechanics and Physics of Solids 49(7), 1539–1568 (2001)

    Article  MATH  Google Scholar 

  10. Dmitrieva, O., Dondl, P.W., Müller, S., Raabe, D.: Lamination microstructure in shear deformed copper single crystals. Acta Materialia 57(12), 3439–3449 (2009)

    Article  Google Scholar 

  11. Dmitrieva, O., Svirina, J.V., Demir, E., Raabe, D.: Investigation of the internal substructure of microbands in a deformed copper single crystal: experiments and dislocation dynamics simulation. Modelling and Simulation in Materials Science and Engineering 18(8) (December 2010)

    Google Scholar 

  12. Hansen, N.: Cold deformation microstructures. Materials Science and Technology 6(11), 1039–1047 (1990)

    Article  Google Scholar 

  13. Hansen, B.L., Bronkhorst, C.A., Ortiz, M.: Dislocation subgrain structures and modeling the plastic hardening of metallic single crystals. Modelling and Simulation in Materials Science and Engineering 18(5), 055001 (2010)

    Google Scholar 

  14. Hackl, K., Hoppe, U., Kochmann, D.M.: Generation and evolution of inelastic microstructures—an overview. GAMM-Mitt. 35(1), 91–106 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  15. Hackl, K., Kochmann, D.M.: An incremental strategy for modeling laminate microstructures in finite plasticity—energy reduction, laminate orientation and cyclic behavior. In: de Borst, R., Ramm, E. (eds.) Multiscale Methods in Computational Mechanics. LNACM, vol. 55, pp. 117–134. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  16. Jin, N., Winter, A.: Dislocation structures in cyclically deformed [001] copper crystals. Acta Metallurgica 32(8), 1173–1176 (1984)

    Article  Google Scholar 

  17. Kochmann, D.M., Hackl, K.: The evolution of laminates in finite crystal plasticity: a variational approach. Contin. Mech. Thermodyn. 23(1), 63–85 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  18. Kondo, K.: On the geometrical and physical foundations of the theory of yielding. In: Proc. 2nd Japan Nat. Congr. Applied Mechanics, pp. 41–47 (1952)

    Google Scholar 

  19. Miehe, C., Rosato, D., Frankenreiter, I.: Fast estimates of evolving orientation microstructures in textured bcc polycrystals at finite plastic strains. Acta Materialia 58(15), 4911–4922 (2010)

    Article  Google Scholar 

  20. Nye, J.F.: Some geometrical relations in dislocated crystals. Acta Metallurgica 1(2), 153–162 (1953)

    Article  Google Scholar 

  21. Ortiz, M., Repetto, E.A.: Nonconvex energy minimization and dislocation structures in ductile single crystals. J. Mech. Phys. Solids 47(2), 397–462 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  22. Reina, C., Conti, S.: Kinematic description of crystal plasticity in the finite kinematic framework: a micromechanical understanding of F = F e F p. J. Mech. Phys. Solids 67, 40–61 (2014)

    Article  MathSciNet  Google Scholar 

  23. Rasmussen, K., Pedersen, O.: Fatigue of copper polycrystals at low plastic strain amplitudes. Acta Metallurgica 28(11), 1467–1478 (1980)

    Article  Google Scholar 

  24. Rodney, D., Phillips, R.: Structure and strength of dislocation junctions: An atomic level analysis. Physical Review Letters 82(8), 1704–1707 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olga Dmitrieva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Dmitrieva, O., Raabe, D., Müller, S., Dondl, P.W. (2015). Microstructure in Plasticity, a Comparison between Theory and Experiment. In: Conti, S., Hackl, K. (eds) Analysis and Computation of Microstructure in Finite Plasticity. Lecture Notes in Applied and Computational Mechanics, vol 78. Springer, Cham. https://doi.org/10.1007/978-3-319-18242-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18242-1_8

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18241-4

  • Online ISBN: 978-3-319-18242-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics