Building Muscle Mass: Physiology, Nutrition, and Supplementation

  • Kyle LeversEmail author
  • Kelley Vargo


One of the most common-sought after goals in athletic performance is attaining and maintaining muscle mass. From protein to creatine, arginine to human growth hormone, how is one to determine what really works, what is legitimate, and what is merely another gimmick in the supplement industry? Coupling the array of supplements with the unique performance needs of an athlete creates an infinite amount of possible combinations. How do you know what is the right combination for successfully building the desired amount of muscle mass, maintaining an “optimal” body composition, and (during periods when additional body mass is desired) ensuring lean mass is gained over fat mass? It is with great time, research, and a foundation laid for us by our predecessors in the field of sports nutrition that we write this chapter on muscle building and optimizing lean body mass. By the end of this chapter you should be able to:
  • Describe the muscle building process

  • Define and determine net protein balance

  • Describe how genetics play a role in muscle growth

  • Know the recommended amounts of protein for gaining muscle

  • Know the suggested protein: carbohydrate ratio for optimal muscle hypertrophy

  • Define nutrient timing and its role in muscle hypertrophy

  • Explain the difference between whey, casein, egg, soy, and vegan protein supplements

  • Explain why and when supplementing with BCAAs are important to muscle growth

  • Explain the major hormones that play a role in muscle growth

  • Explain the potential benefits and drawbacks of anabolic steroids

  • Define the role of IGF in muscle growth

  • Describe the creatine-phosphate system and why creatine is used for muscle hypertrophy

  • Explain why supplements that promote the production of nitric oxide are used by athletes

  • Explain how resistance training stimulates muscle hypertrophy


Sports nutrition Lean body mass Muscle hypertrophy Creatine Protein supplements Net protein balance Nutrient timing Anabolic Anti-catabolic 


  1. 1.
    Tipton K, Ferrando A. Improving muscle mass: response of muscle metabolism to exercise, nutrition and anabolic agents. Essays Biochem. 2008;44:85–98.PubMedCrossRefGoogle Scholar
  2. 2.
    Biolo G, Maggi SP, Williams BD, Tipton KD, Wolfe RR. Increased rates of muscle protein turnover and amino acid transport after resistance exercise in humans. Am J Physiol. 1995;31(3), E514.Google Scholar
  3. 3.
    Phillips SM, Tipton K, Ferrando AA, Wolfe RR. Resistance training reduces the acute exercise-induced increase in muscle protein turnover. Am J Physiol. 1999;276(1):E118–24.PubMedGoogle Scholar
  4. 4.
    Phillips SM, Tipton KD, Aarsland A, Wolf SE, Wolfe RR. Mixed muscle protein synthesis and breakdown after resistance exercise in humans. Am J Physiol. 1997;36(1), E99.Google Scholar
  5. 5.
    Wagenmakers AJ. Tracers to investigate protein and amino acid metabolism in human subjects. Proc Nutr Soc. 1999;58(04):987–1000.PubMedCrossRefGoogle Scholar
  6. 6.
    Biolo G, Tipton KD, Klein S, Wolfe RR. An abundant supply of amino acids enhances the metabolic effect of exercise on muscle protein. Am J Physiol. 1997;36(1), E122.Google Scholar
  7. 7.
    Hulmi JJ, Kovanen V, Selänne H, Kraemer WJ, Häkkinen K, Mero AA. Acute and long-term effects of resistance exercise with or without protein ingestion on muscle hypertrophy and gene expression. Amino Acids. 2009;37(2):297–308.PubMedCrossRefGoogle Scholar
  8. 8.
    Hulmi JJ, Lockwood CM, Stout JR. Effect of protein/essential amino acids and resistance training on skeletal muscle hypertrophy: A case for whey protein. Nutr Metab. 2010;7(51).Google Scholar
  9. 9.
    Tipton KD, Ferrando AA, Phillips SM, Doyle D, Wolfe RR. Postexercise net protein synthesis in human muscle from orally administered amino acids. Am J Physiol. 1999;276(4):E628–34.PubMedGoogle Scholar
  10. 10.
    Pitkanen H, Nykanen T, Knuutinen J, Lahti K, Keinanen O, Alen M, et al. Free amino acid pool and muscle protein balance after resistance exercise. Med Sci Sports Exerc. 2003;35(5):784–92.PubMedCrossRefGoogle Scholar
  11. 11.
    Trumbo P, Schlicker S, Yates AA, Poos M. Dietary reference intakes for energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein and amino acids. J Am Diet Assoc. 2002;102(11):1621–30.PubMedCrossRefGoogle Scholar
  12. 12.
    Kreider RB, Wilborn CD, Taylor L, Campbell B, Almada AL, Collins R, et al. ISSN exercise & sport nutrition review: research & recommendations. J Int Soc Sports Nutr. 2010;7(7):2–43.Google Scholar
  13. 13.
    Forslund AH, El-Khoury AE, Olsson RM, Sjödin AM, Hambraeus L, Young VR. Effect of protein intake and physical activity on 24-h pattern and rate of macronutrient utilization. Am J Physiol. 1999;276(5):E964–76.PubMedGoogle Scholar
  14. 14.
    Friedman J, Lemon P. Effect of chronic endurance exercise on retention of dietary protein. Int J Sports Med. 1989;10(2):118–23.PubMedCrossRefGoogle Scholar
  15. 15.
    Lamont LS, Patel DG, Kalhan SC. Leucine kinetics in endurance-trained humans. J Appl Physiol. 1990;69(1):1–6.PubMedGoogle Scholar
  16. 16.
    Meredith C, Zackin M, Frontera W, Evans W. Dietary protein requirements and body protein metabolism in endurance-trained men. J Appl Physiol. 1989;66(6):2850–6.PubMedGoogle Scholar
  17. 17.
    Phillips SM, Atkinson SA, Tarnopolsky MA, MacDougall J. Gender differences in leucine kinetics and nitrogen balance in endurance athletes. J Appl Physiol. 1993;75(5):2134–41.PubMedGoogle Scholar
  18. 18.
    Lemon P. Protein and amino acid needs of the strength athlete. Int J Sport Nutr. 1991;1(2):127–45.PubMedGoogle Scholar
  19. 19.
    Lemon P, Tarnopolsky M, MacDougall J, Atkinson S. Protein requirements and muscle mass/strength changes during intensive training in novice bodybuilders. J Appl Physiol. 1992;73(2):767–75.PubMedGoogle Scholar
  20. 20.
    Tarnopolsky M, Atkinson S, MacDougall J, Chesley A, Phillips S, Schwarcz H. Evaluation of protein requirements for trained strength athletes. J Appl Physiol. 1992;73(5):1986–95.PubMedGoogle Scholar
  21. 21.
    Chesley A, MacDougall J, Tarnopolsky M, Atkinson S, Smith K. Changes in human muscle protein synthesis after resistance exercise. J Appl Physiol. 1992;73:1383.PubMedGoogle Scholar
  22. 22.
    Kreider RB. Dietary supplements and the promotion of muscle growth with resistance exercise. Sports Med. 1999;27(2):97–110.PubMedCrossRefGoogle Scholar
  23. 23.
    Tarnopolsky MA, MacDougall JD, Atkinson SA. Influence of protein intake and training status on nitrogen balance and lean body mass. J Appl Physiol. 1988;64(1):187–93.PubMedGoogle Scholar
  24. 24.
    Kreider RB, Leutholtz BC, Katch FI, Katch VL. Exercise and sport nutrition. Santa Barbara, CA: Fitness Technologies Press; 2009.Google Scholar
  25. 25.
    Kreider RB, Fry AC, O’Toole MLE, editors. Overtraining in sport. International conference on overtraining in sport, Jul, 1996, U Memphis, Memphis, TN, US; 1998: Human Kinetics.Google Scholar
  26. 26.
    Holwerda AM, van Vliet S, Trommelen J. Refining dietary protein recommendations for the athlete. J Physiol. 2013;591(12):2967–8.PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Moore DR, Robinson MJ, Fry JL, Tang JE, Glover EI, Wilkinson SB, et al. Ingested protein dose response of muscle and albumin protein synthesis after resistance exercise in young men. Am J Clin Nutr. 2009;89(1):161–8.PubMedCrossRefGoogle Scholar
  28. 28.
    Bucci L, Unlu L. Proteins and amino acid supplements in exercise and sport. Driskell L, Wolinsky I (eds). Energy-yielding macronutrients and energy metabolism in sports nutrition. Boca Raton, FL: CRC Press; 2000. pp. 191–212.Google Scholar
  29. 29.
    Etzel MR. Manufacture and use of dairy protein fractions. J Nutr. 2004;134(4):996S–1002.PubMedGoogle Scholar
  30. 30.
    Ha E, Zemel MB. Functional properties of whey, whey components, and essential amino acids: mechanisms underlying health benefits for active people (review). J Nutr Biochem. 2003;14(5):251–8.PubMedCrossRefGoogle Scholar
  31. 31.
    Krissansen GW. Emerging health properties of whey proteins and their clinical implications. J Am Coll Nutr. 2007;26(6):713S–23.PubMedCrossRefGoogle Scholar
  32. 32.
    Elliot TA, Cree MG, Sanford AP, Wolfe RR, Tipton KD. Milk ingestion stimulates net muscle protein synthesis following resistance exercise. Med Sci Sports Exerc. 2006;38(4):667.PubMedCrossRefGoogle Scholar
  33. 33.
    Carunchia Whetstine M, Croissant A, Drake M. Characterization of dried whey protein concentrate and isolate flavor. J Dairy Sci. 2005;88(11):3826–39.PubMedCrossRefGoogle Scholar
  34. 34.
    Tipton KD, Elliott TA, Cree MG, Wolf SE, Sanford AP, Wolfe RR. Ingestion of casein and whey proteins result in muscle anabolism after resistance exercise. Med Sci Sports Exerc. 2004;36:2073–81.PubMedCrossRefGoogle Scholar
  35. 35.
    Mahé S, Messing B, Thuillier F, Tome D. Digestion of bovine milk proteins in patients with a high jejunostomy. Am J Clin Nutr. 1991;54(3):534–8.PubMedGoogle Scholar
  36. 36.
    Boirie Y, Dangin M, Gachon P, Vasson M-P, Maubois J-L, Beaufrère B. Slow and fast dietary proteins differently modulate postprandial protein accretion. Proc Natl Acad Sci USA. 1997;94(26):14930–5.PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Frühbeck G. Protein metabolism: slow and fast dietary proteins. Nature. 1998;391(6670):843–5.PubMedCrossRefGoogle Scholar
  38. 38.
    Phillips SM, Tang JE, Moore DR. The role of milk-and soy-based protein in support of muscle protein synthesis and muscle protein accretion in young and elderly persons. J Am Coll Nutr. 2009;28(4):343–54.PubMedCrossRefGoogle Scholar
  39. 39.
    Katsanos CS, Chinkes DL, Paddon-Jones D, Zhang X-J, Aarsland A, Wolfe RR. Whey protein ingestion in elderly persons results in greater muscle protein accrual than ingestion of its constituent essential amino acid content. Nutr Res. 2008;28(10):651–8.PubMedCentralPubMedCrossRefGoogle Scholar
  40. 40.
    Katsanos CS, Kobayashi H, Sheffield-Moore M, Aarsland A, Wolfe RR. A high proportion of leucine is required for optimal stimulation of the rate of muscle protein synthesis by essential amino acids in the elderly. Am J Physiol. 2006;291(2):E381–7.Google Scholar
  41. 41.
    Koopman R, Wagenmakers AJ, Manders RJ, Zorenc AH, Senden JM, Gorselink M, et al. Combined ingestion of protein and free leucine with carbohydrate increases postexercise muscle protein synthesis in vivo in male subjects. Am J Physiol. 2005;288(4):E645–53.Google Scholar
  42. 42.
    Tipton KD, Elliott TA, Ferrando AA, Aarsland AA, Wolfe RR. Stimulation of muscle anabolism by resistance exercise and ingestion of leucine plus protein. Appl Physiol Nutr Metab. 2009;34(2):151–61.PubMedCrossRefGoogle Scholar
  43. 43.
    Dangin M, Boirie Y, Garcia-Rodenas C, Gachon P, Fauquant J, Callier P, et al. The digestion rate of protein is an independent regulating factor of postprandial protein retention. Am J Physiol. 2001;280(2):E340–8.Google Scholar
  44. 44.
    Mahe S, Roos N, Benamouzig R, Davin L, Luengo C, Gagnon L, et al. Gastrojejunal kinetics and the digestion of [15 N] beta-lactoglobulin and casein in humans: the influence of the nature and quantity of the protein. Am J Clin Nutr. 1996;63(4):546–52.PubMedGoogle Scholar
  45. 45.
    Wilborn CD, Taylor LW, Outlaw J, Williams L, Campbell B, Foster CA, et al. The effects of pre-and post-exercise whey vs. casein protein consumption on body composition and performance measures in collegiate female athletes. J Sports Sci Med. 2013;12(((1):74.Google Scholar
  46. 46.
    Cribb PJ, Williams AD, Carey MF, Hayes A. The effect of whey isolate and resistance training on strength, body composition, and plasma glutamine. Int J Sports Nutr Exerc Metab. 2006;16(5).Google Scholar
  47. 47.
    Demling RH, DeSanti L. Effect of a hypocaloric diet, increased protein intake and resistance training on lean mass gains and fat mass loss in overweight police officers. Ann Nutr Metab. 2000;44(1):21–9.PubMedCrossRefGoogle Scholar
  48. 48.
    Kerksick CM, Rasmussen CJ, Lancaster SL, Magu B, Smith P, Melton C, et al. The effects of protein and amino acid supplementation on performance and training adaptations during ten weeks of resistance training. J Strength Cond Res. 2006;20(3):643–53.PubMedGoogle Scholar
  49. 49.
    Driskell JA, Wolinsky I. Energy-yielding macronutrients and energy metabolism in sports nutrition. New York: CRC Press; 1999.Google Scholar
  50. 50.
    Wilkinson SB, Tarnopolsky MA, MacDonald MJ, MacDonald JR, Armstrong D, Phillips SM. Consumption of fluid skim milk promotes greater muscle protein accretion after resistance exercise than does consumption of an isonitrogenous and isoenergetic soy-protein beverage. Am J Clin Nutr. 2007;85(4):1031–40.PubMedGoogle Scholar
  51. 51.
    Brown EC, DiSilvestro RA, Babaknia A, Devor ST. Soy versus whey protein bars: effects on exercise training impact on lean body mass and antioxidant status. Nutr J. 2004;3(1):22.PubMedCentralPubMedCrossRefGoogle Scholar
  52. 52.
    Bos C, Metges CC, Gaudichon C, Petzke KJ, Pueyo ME, Morens C, et al. Postprandial kinetics of dietary amino acids are the main determinant of their metabolism after soy or milk protein ingestion in humans. J Nutr. 2003;133(5):1308–15.PubMedGoogle Scholar
  53. 53.
    Fouillet H, Mariotti F, Gaudichon C, Bos C, Tomé D. Peripheral and splanchnic metabolism of dietary nitrogen are differently affected by the protein source in humans as assessed by compartmental modeling. J Nutr. 2002;132(1):125–33.PubMedGoogle Scholar
  54. 54.
    Kurzer MS. Hormonal effects of soy in premenopausal women and men. J Nutr. 2002;132(3):570S–3.PubMedGoogle Scholar
  55. 55.
    Pino AM, Valladares LE, Palma MA, Mancilla AM, Yáñez M, Albala C. Dietary isoflavones affect sex hormone-binding globulin levels in postmenopausal women. J Clin Endocrinol Metab. 2000;85(8):2797–800.PubMedGoogle Scholar
  56. 56.
    Rosenberg Zand RS, Jenkins DJ, Brown TJ, Diamandis EP. Flavonoids can block PSA production by breast and prostate cancer cell lines. Clin Chim Acta. 2002;317(1):17–26.PubMedCrossRefGoogle Scholar
  57. 57.
    Kreider R, Kleiner S. Protein supplements for athletes: need vs convenience. Your Patient Fitness. 2000;14(6):12–8.Google Scholar
  58. 58.
    Cox G. Special needs: the vegetarian athlete. In: Burke LM, Deakin V, editors. Clinical sports nutrition. Sydney: McGraw-Hill Book; 2000. p. 656–71.Google Scholar
  59. 59.
    Venderley AM, Campbell WW. Vegetarian diets. Sports Med. 2006;36(4):293–305.PubMedCrossRefGoogle Scholar
  60. 60.
    Nieman DC. Physical fitness and vegetarian diets: is there a relation? Am J Clin Nutr. 1999;70(3):570 s–5s.Google Scholar
  61. 61.
    Barr SI, Rideout CA. Nutritional considerations for vegetarian athletes. Nutrition. 2004;20(7):696–703.PubMedCrossRefGoogle Scholar
  62. 62.
    Craig WJ, Mangels AR. Position of the American Dietetic Association: vegetarian diets. J Am Diet Assoc. 2009;109(7):1266–82.PubMedCrossRefGoogle Scholar
  63. 63.
    Young VR, Pellett PL. Plant proteins in relation to human protein and amino acid nutrition. Am J Clin Nutr. 1994;59(5):1203S–12.PubMedGoogle Scholar
  64. 64.
    Maughan RJ. Creatine supplementation and exercise performance. Int J Sport Nutr. 1995;5(2):94–101.PubMedGoogle Scholar
  65. 65.
    Beelen M, Tieland M, Gijsen AP, Vandereyt H, Kies AK, Kuipers H, et al. Coingestion of carbohydrate and protein hydrolysate stimulates muscle protein synthesis during exercise in young men, with no further increase during subsequent overnight recovery. J Nutr. 2008;138(11):2198–204.PubMedCrossRefGoogle Scholar
  66. 66.
    Wolfe RR. Effects of amino acid intake on anabolic processes. Can J Appl Physiol. 2001;26(S1):S220–7.PubMedCrossRefGoogle Scholar
  67. 67.
    Bolster DR, Jefferson LS, Kimball SR. Regulation of protein synthesis associated with skeletal muscle hypertrophy by insulin-, amino acid-and exercise-induced signalling. Proc Nutr Soc. 2004;63(02):351–6.PubMedCrossRefGoogle Scholar
  68. 68.
    Hillier TA, Fryburg DA, Jahn LA, Barrett EJ. Extreme hyperinsulinemia unmasks insulin’s effect to stimulate protein synthesis in the human forearm. Am J Physiol. 1998;274(6):E1067–74.PubMedGoogle Scholar
  69. 69.
    Kimball S, Jurasinski C, Lawrence J, Jefferson L. Insulin stimulates protein synthesis in skeletal muscle by enhancing the association of eIF-4E and eIF-4G. Am J Physiol. 1997;272(2):C754–9.PubMedGoogle Scholar
  70. 70.
    Biolo G, Fleming RD, Wolfe R. Physiologic hyperinsulinemia stimulates protein synthesis and enhances transport of selected amino acids in human skeletal muscle. J Clin Investig. 1995;95(2):811.PubMedCentralPubMedCrossRefGoogle Scholar
  71. 71.
    Biolo G, Williams BD, Fleming R, Wolfe RR. Insulin action on muscle protein kinetics and amino acid transport during recovery after resistance exercise. Diabetes. 1999;48(5):949–57.PubMedCrossRefGoogle Scholar
  72. 72.
    Gore DC, Wolf SE, Sanford AP, Herndon DN, Wolfe RR. Extremity hyperinsulinemia stimulates muscle protein synthesis in severely injured patients. Am J Physiol. 2004;286(4):E529–34.Google Scholar
  73. 73.
    Denne SC, Liechty EA, Liu Y, Brechtel G, Baron AD. Proteolysis in skeletal muscle and whole body in response to euglycemic hyperinsulinemia in normal adults. Am J Physiol. 1991;261(6 Pt 1):E809–14.PubMedGoogle Scholar
  74. 74.
    Gelfand RA, Barrett EJ. Effect of physiologic hyperinsulinemia on skeletal muscle protein synthesis and breakdown in man. J Clin Investig. 1987;80(1):1.PubMedCentralPubMedCrossRefGoogle Scholar
  75. 75.
    Heslin M, Newman E, Wolf R, Pisters P, Brennan M. Effect of hyperinsulinemia on whole body and skeletal muscle leucine carbon kinetics in humans. Am J Physiol. 1992;262(6):E911–8.PubMedGoogle Scholar
  76. 76.
    Floyd JC, Fajans SS, Pek S, Thiffault CA, Knopf RF, Conn JW. Synergistic effect of essential amino acids and glucose upon insulin secretion in man. Diabetes. 1970;19(2):109–15.PubMedCrossRefGoogle Scholar
  77. 77.
    Floyd Jr JC, Fajans SS, Conn JW, Knopf RF, Rull J. Stimulation of insulin secretion by amino acids. J Clin Investig. 1966;45(9):1487.PubMedCentralPubMedCrossRefGoogle Scholar
  78. 78.
    van Loon LJ, Kruijshoop M, Verhagen H, Saris WH, Wagenmakers AJ. Ingestion of protein hydrolysate and amino acid–carbohydrate mixtures increases postexercise plasma insulin responses in men. J Nutr. 2000;130(10):2508–13.PubMedGoogle Scholar
  79. 79.
    van Loon LJ, Saris WH, Kruijshoop M, Wagenmakers AJ. Maximizing postexercise muscle glycogen synthesis: carbohydrate supplementation and the application of amino acid or protein hydrolysate mixtures. Am J Clin Nutr. 2000;72(1):106–11.PubMedGoogle Scholar
  80. 80.
    van Loon LJ, Saris WH, Verhagen H, Wagenmakers AJ. Plasma insulin responses after ingestion of different amino acid or protein mixtures with carbohydrate. Am J Clin Nutr. 2000;72(1):96–105.PubMedGoogle Scholar
  81. 81.
    Biolo G, Wolfe RR. Insulin action on protein metabolism. Bailliere Clin Endocrinol Metab. 1993;7(4):989–1005.CrossRefGoogle Scholar
  82. 82.
    Miller SL, Tipton KD, Chinkes DL, Wolf SE, Wolfe RR. Independent and combined effects of amino acids and glucose after resistance exercise. Med Sci Sports Exerc. 2003;35(3):449–55.PubMedCrossRefGoogle Scholar
  83. 83.
    Roy B, Tarnopolsky M, MacDougall J, Fowles J, Yarasheski K. Effect of glucose supplement timing on protein metabolism after resistance training. J Appl Physiol. 1997;82(6):1882–8.PubMedGoogle Scholar
  84. 84.
    Aragon AA, Schoenfeld BJ. Nutrient timing revisited: is there a post-exercise anabolic window. J Int Soc Sports Nutr. 2013;10(1):5.PubMedCentralPubMedCrossRefGoogle Scholar
  85. 85.
    Staples AW, Burd NA, West D, Currie KD, Atherton PJ, Moore DR, et al. Carbohydrate does not augment exercise-induced protein accretion versus protein alone. Med Sci Sports Exerc. 2011;43(7):1154–61.PubMedCrossRefGoogle Scholar
  86. 86.
    Tipton KD, Phillips SM. Protein and amino acid supplements in exercise and sport. van Loon LJC, Meeusen R (eds). Dietary protein for muscle hypertrophy. Basel, Switzerland: Karger Medical and Scientific Publishers; 2013. pp. 73–84.Google Scholar
  87. 87.
    Rasmussen BB, Tipton KD, Miller SL, Wolf SE, Wolfe RR. An oral essential amino acid-carbohydrate supplement enhances muscle protein anabolism after resistance exercise. J Appl Physiol. 2000;88(2):386–92.PubMedGoogle Scholar
  88. 88.
    Breen L, Phillips SM. Nutrient interaction for optimal protein anabolism in resistance exercise. Curr Opin Clin Nutr Metab Care. 2012;15(3):226–32.PubMedCrossRefGoogle Scholar
  89. 89.
    Yang Y, Breen L, Burd NA, Hector AJ, Churchward-Venne TA, Josse AR, et al. Resistance exercise enhances myofibrillar protein synthesis with graded intakes of whey protein in older men. Br J Nutr. 2012;108(10):1780–8.PubMedCrossRefGoogle Scholar
  90. 90.
    Wilson JM, Fitschen PJ, Campbell B, Wilson GJ, Zanchi N, Taylor L, et al. International society of sports nutrition position stand: beta-hydroxy-betamethylbutyrate (HMB). J Int Soc Sports Nutr. 2013;10(1):1–14.CrossRefGoogle Scholar
  91. 91.
    Burd NA, West DW, Moore DR, Atherton PJ, Staples AW, Prior T, et al. Enhanced amino acid sensitivity of myofibrillar protein synthesis persists for up to 24 h after resistance exercise in young men. J Nutr. 2011;141(4):568–73.PubMedCrossRefGoogle Scholar
  92. 92.
    Andersen LL, Tufekovic G, Zebis MK, Crameri RM, Verlaan G, Kjær M, et al. The effect of resistance training combined with timed ingestion of protein on muscle fiber size and muscle strength. Metabolism. 2005;54(2):151–6.PubMedCrossRefGoogle Scholar
  93. 93.
    Esmarck B, Andersen J, Olsen S, Richter E, Mizuno M, Kjaer M. Timing of post-exercise protein intake is important for muscle hypertrophy with resistance training in elderly humans. Scand J Med Sci Sports. 2002;12(1):60.Google Scholar
  94. 94.
    Josse AR, Tang JE, Tarnopolsky MA, Phillips SM. Body composition and strength changes in women with milk and resistance exercise. Med Sci Sports Exerc. 2010;42(6):1122–30.PubMedGoogle Scholar
  95. 95.
    Phillips SM, Hartman JW, Wilkinson SB. Dietary protein to support anabolism with resistance exercise in young men. J Am Coll Nutr. 2005;24(2):134S–9.PubMedCrossRefGoogle Scholar
  96. 96.
    Poole C, Wilborn C, Taylor L, Kerksick C. The role of post-exercise nutrient administration on muscle protein synthesis and glycogen synthesis. J Sports Sci Med. 2010;9(3):354.PubMedCentralPubMedGoogle Scholar
  97. 97.
    Tipton KD, Rasmussen BB, Miller SL, Wolf SE, Owens-Stovall SK, Petrini BE, et al. Timing of amino acid-carbohydrate ingestion alters anabolic response of muscle to resistance exercise. Am J Physiol. 2001;281(2):E197–206.Google Scholar
  98. 98.
    Tipton KD, Elliott TA, Cree MG, Aarsland AA, Sanford AP, Wolfe RR. Stimulation of net muscle protein synthesis by whey protein ingestion before and after exercise. Am J Physiol. 2007;292(1):E71–6.Google Scholar
  99. 99.
    Kumar V, Atherton P, Smith K, Rennie MJ. Human muscle protein synthesis and breakdown during and after exercise. J Appl Physiol. 2009;106(6):2026–39.PubMedCrossRefGoogle Scholar
  100. 100.
    Zawadzki K, Yaspelkis B, Ivy J. Carbohydrate-protein complex increases the rate of muscle glycogen storage after exercise. J Appl Physiol. 1992;72(5):1854–9.PubMedGoogle Scholar
  101. 101.
    Greenhaff PL, Karagounis L, Peirce N, Simpson EJ, Hazell M, Layfield R, et al. Disassociation between the effects of amino acids and insulin on signaling, ubiquitin ligases, and protein turnover in human muscle. Am J Physiol. 2008;295(3):E595–604.Google Scholar
  102. 102.
    Rennie MJ, Bohé J, Smith K, Wackerhage H, Greenhaff P. Branched-chain amino acids as fuels and anabolic signals in human muscle. J Nutr. 2006;136(1):264S–8.PubMedGoogle Scholar
  103. 103.
    Power O, Hallihan A, Jakeman P. Human insulinotropic response to oral ingestion of native and hydrolysed whey protein. Amino Acids. 2009;37(2):333–9.PubMedCrossRefGoogle Scholar
  104. 104.
    Levenhagen DK, Gresham JD, Carlson MG, Maron DJ, Borel MJ, Flakoll PJ. Postexercise nutrient intake timing in humans is critical to recovery of leg glucose and protein homeostasis. Am J Physiol. 2001;280(6):E982–93.Google Scholar
  105. 105.
    Staples AW, Burd NA, West D, Currie KD, Atherton PJ, Moore DR, et al. Carbohydrate does not augment exercise-induced protein accretion versus protein alone. Med Sci Sports Exerc. 2011;43(7):1154–61.PubMedCrossRefGoogle Scholar
  106. 106.
    Kreider RB. Effects of creatine supplementation on performance and training adaptations. Mol Cell Biochem. 2003;244(1–2):89–94.PubMedCrossRefGoogle Scholar
  107. 107.
    Chromiak JA, Antonio J. Use of amino acids as growth hormone-releasing agents by athletes. Nutrition. 2002;18(7):657–61.PubMedCrossRefGoogle Scholar
  108. 108.
    Kreider RB, Leutholtz BC, Greenwood M. Creatine. Wolinsky I, Driskel J (eds). Nutritional ergogenic aids. Boca Raton, FL: CRC Press; 2004. pp. 81–104.Google Scholar
  109. 109.
    Green A, Hultman E, Macdonald I, Sewell D, Greenhaff P. Carbohydrate ingestion augments skeletal muscle creatine accumulation during creatine supplementation in humans. Am J Physiol. 1996;271(5):E821–6.PubMedGoogle Scholar
  110. 110.
    Greenhaff P, editor. Muscle creatine loading in humans: procedures and functional and metabolic effects. 6th international conference on Guanidino compounds in biology and medicine. Cincinnati, OH; 2001.Google Scholar
  111. 111.
    Steenge G, Simpson E, Greenhaff P. Protein-and carbohydrate-induced augmentation of whole body creatine retention in humans. J Appl Physiol. 2000;89(3):1165–71.PubMedGoogle Scholar
  112. 112.
    Hultman E, Soderlund K, Timmons J, Cederblad G, Greenhaff P. Muscle creatine loading in men. J Appl Physiol. 1996;81(1):232–7.PubMedGoogle Scholar
  113. 113.
    Burke DG, Smith-Palmer T, Holt LE, Head B, Chilibeck PD. The effect of 7 days of creatine supplementation on 24-hour urinary creatine excretion. J Strength Cond Res. 2001;15(1):59–62.PubMedGoogle Scholar
  114. 114.
    Williams MH, Kreider RB, Branch JD. Creatine: the power supplement. Champaign: Human Kinetics; 1999.Google Scholar
  115. 115.
    Kreider RB, Ferreira M, Wilson M, Grindstaff P, Plisk S, Reinardy J, et al. Effects of creatine supplementation on body composition, strength, and sprint performance. Med Sci Sports Exerc. 1998;30:73–82.PubMedCrossRefGoogle Scholar
  116. 116.
    Earnest CP, Snell P, Rodriguez R, Almada A, Mitchell T. The effect of creatine monohydrate ingestion on anaerobic power indices, muscular strength and body composition. Acta Physiol Scand. 1995;153(2):207.PubMedCrossRefGoogle Scholar
  117. 117.
    Antonio J, Stout JR. Sports supplements. Philadelphia: Lippincott Williams & Wilkins; 2001.Google Scholar
  118. 118.
    Kreider RB, Klesges R, Harmon K, Grindstaff P, Ramsey L, Bullen D, et al. Effects of ingesting supplements designed to promote lean tissue accretion on body composition during resistance training. Int J Sport Nutr. 1996;6:234–46.PubMedGoogle Scholar
  119. 119.
    Stout J, Eckerson J, Noonan D, Moore G, Cullen D. Effects of 8 weeks of creatine supplementation on exercise performance and fat-free weight in football players during training. Nutr Res. 1999;19(2):217–25.CrossRefGoogle Scholar
  120. 120.
    Stout J, Eckerson J, Noonan D, Moore G, Cullen D. The effects of a supplement designed to augment creatine uptake on exercise performance and fat-free mass in football players 1429. Med Sci Sports Exerc. 1997;29(5):251.CrossRefGoogle Scholar
  121. 121.
    Vandenberghe K, Goris M, Van Hecke P, Van Leemputte M, Vangerven L, Hespel P. Long-term creatine intake is beneficial to muscle performance during resistance training. J Appl Physiol. 1997;83(6):2055–63.PubMedGoogle Scholar
  122. 122.
    Mihic S, MacDonald JR, McKenzie S, Tarnopolsky MA. Acute creatine loading increases fat-free mass, but does not affect blood pressure, plasma creatinine, or CK activity in men and women. Med Sci Sports Exerc. 2000;32(2):291–6.PubMedCrossRefGoogle Scholar
  123. 123.
    Bessman S, Savabi F. The role of the phosphocreatine energy shuttle in exercise and muscle hypertrophy. San Diego, CA: Academic; 1988. p. 185–98.Google Scholar
  124. 124.
    Volek JS, Duncan ND, Mazzetti SA, Staron RS, Putukian M, Gomez A, et al. Performance and muscle fiber adaptations to creatine supplementation and heavy resistance training. Med Sci Sports Exerc. 1999;31:1147–56.PubMedCrossRefGoogle Scholar
  125. 125.
    Willoughby DS, Rosene J. Effects of oral creatine and resistance training on myosin heavy chain expression. Med Sci Sports Exerc. 2001;33(10):1674–81.PubMedCrossRefGoogle Scholar
  126. 126.
    Willoughby DS, Rosene JM. Effects of oral creatine and resistance training on myogenic regulatory factor expression. Med Sci Sports Exerc. 2003;35(6):923–9.PubMedCrossRefGoogle Scholar
  127. 127.
    Lowe DA, Lund T, Alway SE. Hypertrophy-stimulated myogenic regulatory factor mRNA increases are attenuated in fast muscle of aged quails. Am J Physiol. 1998;275(1):C155–62.PubMedGoogle Scholar
  128. 128.
    Schultz E, McCormick KM. Skeletal muscle satellite cells. Rev Physiol Biochem Pharmacol. 1994;Volume 123:p. 213–57. Springer.PubMedGoogle Scholar
  129. 129.
    Hawke TJ. Muscle stem cells and exercise training. Exerc Sport Sci Rev. 2005;33(2):63–8.PubMedCrossRefGoogle Scholar
  130. 130.
    Olsen S, Aagaard P, Kadi F, Tufekovic G, Verney J, Olesen JL, et al. Creatine supplementation augments the increase in satellite cell and myonuclei number in human skeletal muscle induced by strength training. J Physiol. 2006;573(2):525–34.PubMedCentralPubMedCrossRefGoogle Scholar
  131. 131.
    Vingren JL, Kraemer WJ, Ratamess NA, Anderson JM, Volek JS, Maresh CM. Testosterone physiology in resistance exercise and training. Sports Med. 2010;40(12):1037–53.PubMedCrossRefGoogle Scholar
  132. 132.
    Antonio J, Stout JR. Supplements for strength-power athletes. Champaign: Human Kinetics; 2002.Google Scholar
  133. 133.
    Lukaski HC. Magnesium, zinc, and chromium nutriture and physical activity. Am J Clin Nutr. 2000;72(2):585 s–93s.Google Scholar
  134. 134.
    Shils ME, Shike M. Modern nutrition in health and disease. Philadelphia: Lippincott Williams & Wilkins; 2006.Google Scholar
  135. 135.
    Buchman AL, Keen C, Commisso J, Killip D, Ou C-N, Rognerud CL, et al. The effect of a marathon run on plasma and urine mineral and metal concentrations. J Am Coll Nutr. 1998;17(2):124–7.PubMedCrossRefGoogle Scholar
  136. 136.
    Kikukawa A, Kobayashi A. Changes in urinary zinc and copper with strenuous physical exercise. Aviat Space Environ Med. 2002;73(10):991–5.PubMedGoogle Scholar
  137. 137.
    Lukaski HC. Micronutrients (magnesium, zinc, and copper): are mineral supplements needed for athletes? Int J Sport Nutr. 1995;5:S74-S.Google Scholar
  138. 138.
    Nielsen FH, Lukaski HC. Update on the relationship between magnesium and exercise. Magnes Res. 2006;19(3):180–9.PubMedGoogle Scholar
  139. 139.
    Brilla L, Conte V. Effects of a novel zinc-magnesium formulation on hormones and strength. J Exerc Physiol Online. 2000;3(4).Google Scholar
  140. 140.
    Koehler K, Parr M, Geyer H, Mester J, Schänzer W. Serum testosterone and urinary excretion of steroid hormone metabolites after administration of a high-dose zinc supplement. Eur J Clin Nutr. 2009;63(1):65–70.PubMedCrossRefGoogle Scholar
  141. 141.
    Wilborn CD, Kerksick CM, Campbell BI, Taylor LW, Marcello BM, Rasmussen CJ, et al. Effects of zinc magnesium aspartate (ZMA) supplementation on training adaptations and markers of anabolism and catabolism. J Int Soc Sports Nutr. 2004;1(2):12–20.PubMedCentralPubMedCrossRefGoogle Scholar
  142. 142.
    Qureshi A, Naughton DP, Petroczi A. A systematic review on the herbal extract Tribulus terrestris and the roots of its putative aphrodisiac and performance enhancing effect. J Diet Suppl. 2014;11(1):64–79.PubMedCrossRefGoogle Scholar
  143. 143.
    Neychev VK, Mitev VI. The aphrodisiac herb Tribulus terrestris does not influence the androgen production in young men. J Ethnopharmacol. 2005;101(1):319–23.PubMedCrossRefGoogle Scholar
  144. 144.
    Rogerson S, Riches CJ, Jennings C, Weatherby RP, Meir RA, Marshall-Gradisnik SM. The effect of five weeks of Tribulus terrestris supplementation on muscle strength and body composition during preseason training in elite rugby league players. J Strength Cond Res. 2007;21(2):348–53.PubMedGoogle Scholar
  145. 145.
    West D, Phillips SM. Anabolic processes in human skeletal muscle: restoring the identities of growth hormone and testosterone. Phys Sports Med. 2010;38(3):97–104.CrossRefGoogle Scholar
  146. 146.
    Ahmad AM, Hopkins MT, Thomas J, Ibrahim H, Fraser WD, Vora JP. Body composition and quality of life in adults with growth hormone deficiency; effects of low-dose growth hormone replacement. Clin Endocrinol. 2001;54(6):709–17.Google Scholar
  147. 147.
    Alba-Roth J, Müller OA, Schopohl J, Werder KV. Arginine stimulates growth hormone secretion by suppressing endogenous somatostatin secretion. J Clin Endocrinol Metab. 1988;67(6):1186–9.Google Scholar
  148. 148.
    Fernholm R, Bramnert M, Hägg E, Hilding A, Baylink DJ, Mohan S, et al. Growth hormone replacement therapy improves body composition and increases bone metabolism in elderly patients with pituitary disease. J Clin Endocrinol Metab. 2000;85(11):4104–12.PubMedGoogle Scholar
  149. 149.
    Merimee TJ, Rabinowitz D, Riggs L, Burgess JA, Rimoin DL, McKusick VA. Plasma growth hormone after arginine infusion: clinical experiences. N Engl J Med. 1967;276(8):434–9.PubMedCrossRefGoogle Scholar
  150. 150.
    Thorén M, Hilding A, Baxter RC, Degerblad M, Wivall-Helleryd I-L, Hall K. Serum insulin-like growth factor I (IGF-I), IGF-binding protein-1 and-3, and the acid-labile subunit as serum markers of body composition during growth hormone (GH) therapy in adults with GH deficiency 1. J Clin Endocrinol Metab. 1997;82(1):223–8.PubMedGoogle Scholar
  151. 151.
    Brennan BP, Kanayama G, Hudson JI, Pope Jr HG. Human growth hormone abuse in male weightlifters. Am J Addict. 2011;20(1):9–13.PubMedCentralPubMedCrossRefGoogle Scholar
  152. 152.
    Schaefer A, Piquard F, Geny B, Doutreleau S, Lampert E, Mettauer B, et al. L-arginine reduces exercise-induced increase in plasma lactate and ammonia. Int J Sports Med. 2002;23(06):403–7.PubMedCrossRefGoogle Scholar
  153. 153.
    Zajac A, Poprzecki S, Zebrowska A, Chalimoniuk M, Langfort J. Arginine and ornithine supplementation increases growth hormone and insulin-like growth factor-1 serum levels after heavy-resistance exercise in strength-trained athletes. J Strength Cond Res. 2010;24(4):1082–90.PubMedCrossRefGoogle Scholar
  154. 154.
    Isidori A, Lo Monaco A, Cappa M. A study of growth hormone release in man after oral administration of amino acids. Curr Med Res Opin. 1981;7(7):475–81.PubMedCrossRefGoogle Scholar
  155. 155.
    Besset A, Bonardet A, Rondouin G, Descomps B, Passouant P. Increase in sleep related GH and Prl secretion after chronic arginine aspartate administration in man. Acta Endocrinol (Copenh). 1982;99(1):18–23.Google Scholar
  156. 156.
    Colombani P, Bitzi R, Frey-Rindova P, Frey W, Arnold M, Langhans W, et al. Chronic arginine aspartate supplementation in runners reduces total plasma amino acid level at rest and during a marathon run. Eur J Nutr. 1999;38(6):263–70.PubMedCrossRefGoogle Scholar
  157. 157.
    Alvares TS, Conte-Junior CA, Silva JT, Paschoalin VMF. L-arginine does not improve biochemical and hormonal response in trained runners after 4 weeks of supplementation. Nutr Res. 2014;34(1):31–9.PubMedCrossRefGoogle Scholar
  158. 158.
    Corpas E, Blackman MR, Roberson R, Scholfield D, Harman SM. Oral arginine-lysine does not increase growth hormone or insulin-like growth factor-I in old men. J Gerontol. 1993;48(4):M128-M.CrossRefGoogle Scholar
  159. 159.
    da Silva DVT, Conte-Junior CA, Paschoalin VMF, da Silveira AT. Hormonal response to L-arginine supplementation in physically active individuals. Food Nutr Res. 2014;58.Google Scholar
  160. 160.
    Forbes SC, Harber V, Bell GJ. Oral L-arginine prior to resistance exercise blunts growth hormone in strength trained males. Int J Sport Nutr Exerc Metab. 2013;24(2):236–44.PubMedCrossRefGoogle Scholar
  161. 161.
    Forbes SC, Harber V, Bell GJ. The acute effects of L-arginine on hormonal and metabolic responses during submaximal exercise in trained cyclists. Int J Sports Nutr Exerc Metab. 2013;23:369–77.Google Scholar
  162. 162.
    Nassar E, Mulligan C, Taylor L, Kerksick C, Galbreath M, Greenwood M, et al. Effects of a single dose of N-Acetyl-5-methoxytryptamine (Melatonin) and resistance exercise on the growth hormone/IGF-1 axis in young males and females. J Int Soc Sports Nutr. 2007;4(1):1–13.CrossRefGoogle Scholar
  163. 163.
    Meeking D, Wallace J, Cuneo R, Forsling M, Russell-Jones D. Exercise-induced GH secretion is enhanced by the oral ingestion of melatonin in healthy adult male subjects. Eur J Endocrinol. 1999;141(1):22–6.PubMedCrossRefGoogle Scholar
  164. 164.
    Mero AA, Vähälummukka M, Hulmi JJ, Kallio P, von Wright A. Effects of resistance exercise session after oral ingestion of melatonin on physiological and performance responses of adult men. Eur J Appl Physiol. 2006;96(6):729–39.PubMedCrossRefGoogle Scholar
  165. 165.
    Laron Z. Somatomedin-1 (recombinant insulin-like growth factor-1). BioDrugs. 1999;11(1):55–70.PubMedCrossRefGoogle Scholar
  166. 166.
    Laron Z. Insulin-like growth factor 1 (IGF-1): a growth hormone. Mol Pathol. 2001;54(5):311–6.PubMedCentralPubMedCrossRefGoogle Scholar
  167. 167.
    Spangenburg EE. IGF-I isoforms and ageing skeletal muscle: an ‘unresponsive’ hypertrophy agent? J Physiol. 2003;547((1):2.Google Scholar
  168. 168.
    Mero A, Kähkönen J, Nykänen T, Parviainen T, Jokinen I, Takala T, et al. IGF-I, IgA, and IgG responses to bovine colostrum supplementation during training. J Appl Physiol. 2002;93(2):732–9.PubMedCrossRefGoogle Scholar
  169. 169.
    Mero A, Miikkulainen H, Riski J, Pakkanen R, Aalto J, Takala T. Effects of bovine colostrum supplementation on serum IGF-I, IgG, hormone, and saliva IgA during training. J Appl Physiol. 1997;83(4):1144–51.PubMedGoogle Scholar
  170. 170.
    Deldicque L, Louis M, Theisen D, Nielens H, Dehoux M, Thissen J-P, et al. Increased IGF mRNA in human skeletal muscle after creatine supplementation. Med Sci Sports Exerc. 2005;37(5):731–6.PubMedCrossRefGoogle Scholar
  171. 171.
    Burke DG, Candow DG, Chilibeck PD, MacNeil LG, Roy BD, Tarnopolsky MA, et al. Effect of creatine supplementation and resistance-exercise training on muscle insulin-like growth factor in young adults. Int J Sport Nutr. 2008;18(4):389.Google Scholar
  172. 172.
    Ameri P, Giusti A, Boschetti M, Bovio M, Teti C, Leoncini G, et al. Vitamin D increases circulating IGF1 in adults: potential implication for the treatment of GH deficiency. Eur J Endocrinol. 2013;169(6):767–72.PubMedCrossRefGoogle Scholar
  173. 173.
    Fabian C. The what, why and how of aromatase inhibitors: hormonal agents for treatment and prevention of breast cancer. Int J Clin Pract. 2007;61(12):2051–63.PubMedCentralPubMedCrossRefGoogle Scholar
  174. 174.
    Fryburg DA, Barrett EJ, Louard RJ, Gelfand RA. Effect of starvation on human muscle protein metabolism and its response to insulin. Am J Physiol. 1990;259(4):E477–82.PubMedGoogle Scholar
  175. 175.
    Curthoys NP, Watford M. Regulation of glutaminase activity and glutamine metabolism. Annu Rev Nutr. 1995;15(1):133–59.PubMedCrossRefGoogle Scholar
  176. 176.
    Blomstrand E, Essén-Gustavsson B. Changes in amino acid concentration in plasma and type I and type II fibres during resistance exercise and recovery in human subjects. Amino Acids. 2009;37(4):629–36.PubMedCrossRefGoogle Scholar
  177. 177.
    Gleeson M, Walsh N, Blannin A, Robson P, Cook L, Donnelly AE, et al. The effect of severe eccentric exercise-induced muscle damage on plasma elastase, glutamine and zinc concentrations. Eur J Appl Physiol Occup Physiol. 1998;77(6):543–6.PubMedCrossRefGoogle Scholar
  178. 178.
    Street B, Byrne C, Eston R. Glutamine supplementation in recovery from eccentric exercise attenuates strength loss and muscle soreness. J Exerc Sci Fitness. 2011;9(2):116–22.CrossRefGoogle Scholar
  179. 179.
    Jówko E, Ostaszewski P, Jank M, Sacharuk J, Zieniewicz A, Wilczak J, et al. Creatine and β-hydroxy-β-methylbutyrate (HMB) additively increase lean body mass and muscle strength during a weight-training program. Nutrition. 2001;17(7):558–66.PubMedCrossRefGoogle Scholar
  180. 180.
    Knitter A, Panton L, Rathmacher J, Petersen A, Sharp R. Effects of β-hydroxy-β-methylbutyrate on muscle damage after a prolonged run. J Appl Physiol. 2000;89(4):1340–4.PubMedGoogle Scholar
  181. 181.
    Pellegrinotti I, Cesar MC, Rochelle M, Rochelle SA, Borin J, Rosa R, et al. Effect of oral glutamine supplementation on exercise performance in endurance swimmers. Pensar a Prática. 2012;15(2):317–30.CrossRefGoogle Scholar
  182. 182.
    Ramallo B, Charro MA, Foschini D, Prestes J, Pithon-Curi T, Evangelista A, et al. ACUTE glutamine supplementation does not affect muscle damage profile after resistance training. Int J Sports Sci. 2013;3(1):4–9.Google Scholar
  183. 183.
    Nissen S, Sharp R, Ray M, Rathmacher J, Rice D, Fuller J, et al. Effect of leucine metabolite β-hydroxy-β-methylbutyrate on muscle metabolism during resistance-exercise training. J Appl Physiol. 1996;81(5):2095–104.PubMedGoogle Scholar
  184. 184.
    Davis G, Lowery RP, Duncan N, Sikorski E, Rathmacher J, Baier S, et al. The effects of beta-hydoxy-beta-methylbutyrate free acid supplementation on muscle damage, hormonal status, and performance following a high volume 2-week overreaching cycle. J Int Soc Sports Nutr. 2012;9 Suppl 1:4.CrossRefGoogle Scholar
  185. 185.
    Van Someren KA, Edwards AJ, Howatson G. Supplementation with B-hydroxy-B-methylbutyrate (HMB) and a-ketoisocaproic acid (KIC) reduces signs and symptoms of exercise-induced muscle damage in man. Int J Sports Nutr Exerc Metab. 2005;15(4).Google Scholar
  186. 186.
    Lowery RP, Joy JM, Rathmacher JA, Baier SM, Fuller Jr J, Shelley M, et al. Interaction of beta-hydroxy-beta-methylbutyrate free acid (HMB-FA) and adenosine triphosphate (ATP) on muscle mass, strength, and power in resistance trained individuals. J Strength Cond Res. 2014.Google Scholar
  187. 187.
    Dunsmore K, Lowery RP, Duncan N, Davis G, Rathmacher J, Baier S, et al. Effects of 12 weeks of beta-hydroxy-beta-methylbutyrate free acid Gel supplementation on muscle mass, strength, and power in resistance trained individuals. J Int Soc Sports Nutr. 2012;9 Suppl 1:5.CrossRefGoogle Scholar
  188. 188.
    Lowery RP, Joy J, Rathmacher JA, Baier SM, Fuller JC, Jäger R, et al. Effects of 12 weeks of beta-hydroxy-beta-methylbutyrate free acid, adenosine triphosphate, or a combination on muscle mass, strength, and power in resistance trained individuals. J Int Soc Sports Nutr. 2013;10 Suppl 1:17.CrossRefGoogle Scholar
  189. 189.
    Stamler JS, Meissner G. Physiology of nitric oxide in skeletal muscle. Physiol Rev. 2001;81(1):209–37.PubMedGoogle Scholar
  190. 190.
    KINGWELL BA. Nitric oxide-mediated metabolic regulation during exercise: effects of training in health and cardiovascular disease. FASEB J. 2000;14(12):1685–96.PubMedCrossRefGoogle Scholar
  191. 191.
    Moncada S, Higgs E, Hodson H, Knowles R, López-Jaramillo P, McCall T, et al. The L-arginine: nitric oxide pathway. J Cardiovasc Pharmacol. 1991;17:S1.CrossRefGoogle Scholar
  192. 192.
    Campbell B, Roberts M, Kerksick C, Wilborn C, Marcello B, Taylor L, et al. Pharmacokinetics, safety, and effects on exercise performance of L-arginine α-ketoglutarate in trained adult men. Nutrition. 2006;22(9):872–81.PubMedCrossRefGoogle Scholar
  193. 193.
    Reid J, Skelton G, Clark M, Boucher A, Willoughby DS. Effects of 7 days of arginine-alpha-ketoglutarate supplementation using NO2 Platinum on brachial artery blood flow and the levels of plasma L-arginine, nitric oxide, and eNOS after resistance exercise. J Int Soc Sports Nutr. 2010;7 Suppl 1:22.CrossRefGoogle Scholar
  194. 194.
    Álvares TS, Conte Jr CA, Paschoalin VMF, Silva JT, Meirelles CM, Bhambhani YN, 1, et al. Acute l-arginine supplementation increases muscle blood volume but not strength performance. Appl Physiol Nutr Metab. 2012;37(1):115–26.PubMedCrossRefGoogle Scholar
  195. 195.
    Willoughby DS, Boucher T, Reid J, Skelton G, Clark M. Effects of 7 days of arginine-alpha-ketoglutarate supplementation on blood flow, plasma L-arginine, nitric oxide metabolites, and asymmetric dimethyl arginine after resistance exercise. Int J Sports Nutr Exerc Metab. 2011;21(4):291.Google Scholar
  196. 196.
    Sureda A, Córdova A, Ferrer MD, Pérez G, Tur JA, Pons A. L-citrulline-malate influence over branched chain amino acid utilization during exercise. Eur J Appl Physiol. 2010;110(2):341–51.PubMedCrossRefGoogle Scholar
  197. 197.
    Schwedhelm E, Maas R, Freese R, Jung D, Lukacs Z, Jambrecina A, et al. Pharmacokinetic and pharmacodynamic properties of oral L-citrulline and L-arginine: impact on nitric oxide metabolism. Br J Clin Pharmacol. 2008;65(1):51–9.Google Scholar
  198. 198.
    Ochiai M, Hayashi T, Morita M, Ina K, Maeda M, Watanabe F, et al. Short-term effects of l-citrulline supplementation on arterial stiffness in middle-aged men. Int J Cardiol. 2012;155(2):257–61.PubMedCrossRefGoogle Scholar
  199. 199.
    Hecker M, Sessa WC, Harris HJ, Anggård E, Vane JR. The metabolism of L-arginine and its significance for the biosynthesis of endothelium-derived relaxing factor: cultured endothelial cells recycle L-citrulline to L-arginine. Proc Natl Acad Sci USA. 1990;87(21):8612–6.PubMedCentralPubMedCrossRefGoogle Scholar
  200. 200.
    Takeda K, Machida M, Kohara A, Omi N, Takemasa T. Effects of citrulline supplementation on fatigue and exercise performance in mice. J Nutr Sci Vitaminol. 2011;57(3):246–50.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Texas A&M UniversityCollege StationUSA
  2. 2.George Washington UniversityWashington, DCUSA

Personalised recommendations