Skip to main content

Beyond the Obvious: Future Innovations in Sports Nutrition

  • Chapter
Nutritional Supplements in Sports and Exercise

Abstract

The global proliferation of sports nutrition brands is emblematic of the size of consumers seeking enhancements through this class of ingestible products. However, a nearly ubiquitous theme of commonality is shared by these products: the compositions are often close to identical, differing only by amount and description, with ancillary alterations in flavor or packaging. How many branched chain amino acid or whey protein compositions can be birthed? The future of sports nutrition will continue to witness the penetration of multinational (food, beverage, and pharma) brands entering the fray through acquisition, and patent filings, which may foster a generic storm or heightened innovation. What remains most compelling is the opportunity for true innovation and pioneering to disrupt the highly duplicative sports nutrition product landscape. Such adventurous excursions may include systematic research/innovation programs that provide novelty, compelling proof of concept, and “real-world” utility; implementation of research methods that provide direct, inferential insights into the bioavailability and metabolism of bioactives; and novel protein/amino nitrogen sources that mimic the biological effects of whey protein.

Absence of evidence is not evidence of absence [unless intensive investigations have beeyucted].—Modified from Carl Sagan

For a successful technology, reality must take precedence over public relations, for Nature cannot be fooled.—Richard Feynman (Nobel laureate, Physics, 1965), from his report on the Challenger mission failure submitted to NASA

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Almada AL. Nutraceuticals and functional foods: aligning with the norm or preparing for the storm. In: Bagchi D, editor. Nutraceutical and functional food regulations in the United States and around the world. 2nd ed. London: Academic Press; 2014. p. 3–11.

    Chapter  Google Scholar 

  2. Sackett DL, Rosenberg WMC, Gray JAM, Haynes RB, Richardson WS. Evidence based medicine: what it is and what it isn’t. BMJ. 1996;312:71–2.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Dietary Supplement Health and Education Act of 1994 Pub. L. No. 103–417, 108 Stat. 4325 (October 25, 1994).

    Google Scholar 

  4. http://eurlex.europa.eu/LexUriServ/LexUriServ.do?uri=CONSLEG:2002R0178:20090807:EN:HTML

  5. http://eur-lex.europa.eu/legal-content/en/ALL/?uri=CELEX:32006R1924

  6. http://laws-lois.justice.gc.ca/eng/regulations/SOR-2003-196/page-1.html

  7. Anon. Unregulated dietary supplements. 19 Sep 1998 [cited 2014 Nov 14] http://www.nytimes.com/1998/09/19/opinion/unregulated-dietary-supplements.html

  8. Wallis L. The toxic truth about vitamin supplements: How health pills millions take with barely a second thought can do more harm than good 23 Aug 2010 [cited 2014 Nov 15] http://www.dailymail.co.uk/health/article-1305534/The-toxic-truth-vitamin-supplements-Health-pills-millions-barely-second-thought-harm-good.html

  9. Anon. Sports nutrition sector hits back at “unregulated” charge. 18 Feb 2013 [cited 2014 Nov 15] http://www.naturalproductsonline.co.uk/sports-nutrition-sector-hits-back-at-unregulated-charge/

  10. Anon. Supplementing your supplements. 14 August 2013 [cited 2014 Nov 15] www.spoor.com/articles/Supplementing_your_supplements-474.html

  11. Candow DG, Kleisinger AK, Grenier S, Dorsch KD. Effect of sugar-free Red Bull energy drink on high-intensity run time-to-exhaustion in young adults. J Strength Cond Res. 2009;23:1271–5.

    Article  PubMed  Google Scholar 

  12. Spradley BD, Crowley KR, Tai CY, Kendall KL, Fukuda DH, Esposito EN, et al. Ingesting a pre-workout supplement containing caffeine, B-vitamins, amino acids, creatine, and beta-alanine before exercise delays fatigue while improving reaction time and muscular endurance. Nutr Metab. 2012;9:28.

    Article  CAS  Google Scholar 

  13. Kendall KL, Moon JR, Fairman CM, Spradley BD, Tai CY, Falcone PH, et al. Ingesting a pre-workout supplement containing caffeine, creatine, beta-alanine, amino acids, and B-vitamins for 28 days is both safe and efficacious in recreationally active men. Nutr Res. 2014;34:442–9.

    Article  CAS  PubMed  Google Scholar 

  14. Gonzalez AM, Walsh AL, Ratamess NA, Kang J, Hoffman JR. Effect of a pre-workout energy supplement on acute multi-joint resistance exercise. J Sports Sci Med. 2011;10:261–6.

    PubMed Central  PubMed  Google Scholar 

  15. Fukuda DH, Smith AE, Kendall KL, Stout JR. The possible combinatory effects of acute consumption of caffeine, creatine, and amino acids on the improvement of anaerobic running performance in humans. Nutr Res. 2010;30:607–14.

    Article  CAS  PubMed  Google Scholar 

  16. Lee J, Kim HT, Solares GJ, Kim K, Ding Z, Ivy JL. Caffeinated nitric oxide-releasing lozenge improves cycling time trial performance. Int J Sports Med. 2015;36:107–12.

    Google Scholar 

  17. Griffiths RR, Evans SM, Heishman SJ, Preston KL, Sannerud CA, Wolf B, et al. Low-dose caffeine discrimination in humans. J Pharmacol Exp Ther. 1990;252:970–8.

    CAS  PubMed  Google Scholar 

  18. Childs E, de Wit H. Subjective, behavioral, and physiological effects of acute caffeine in light, nondependent caffeine users. Psychopharmacology (Berl). 2006;185:514–23.

    Article  CAS  Google Scholar 

  19. Hobson RM, Saunders B, Ball G, Harris RC, Sale C. Effects of ß-alanine supplementation on exercise performance: a meta-analysis. Amino Acids. 2012;43:25–37.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Liu Q, Sikand P, Ma C, Tang Z, Han L, Li Z, et al. Mechanisms of itch evoked by ß-alanine. J Neurosci. 2012;32:14532–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Decombaz J, Beaumont M, Vuichoud J, Bouisset F, Stellingwerff T. Effect of slow-release ß-alanine tablets on absorption kinetics and paresthesia. Amino Acids. 2012;43:67–76.

    Article  CAS  PubMed  Google Scholar 

  22. Jensen KB, Kaptchuk TJ, Chen X, Kirsch I, Ingvar M, Gollub RL, et al. A neural mechanism for nonconscious activation of conditioned placebo and nocebo responses. Cereb Cortex. 2014. doi:10.1093/cercor/bhu275.

    PubMed Central  Google Scholar 

  23. Boirie Y, Dangin M, Gachon P, Vasson MP, Maubois JL, Beaufrère B. Slow and fast dietary proteins differently modulate postprandial protein accretion. Proc Natl Acad Sci U S A. 1997;94:14930–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Anon. L-Carnitine - Is it good or bad for your heart? Hammer Nutrition [cited 2014 Nov 21]; [about 3 screens]. Available from: http://www.hammernutrition.com/knowledge/l-carnitine-is-it-good-or-bad-for-your-heart.17139.html?sect=blog-section

  25. Lockridge R. 11 side effects of L-carnitine. 18 Oct 2013 [cited 2014 Nov 21] http://www.bodybuilding.com/fun/11-super-side-effects-from-taking-l-carnitine.html

  26. Poliquin Group editorial staff. Top 12 reasons to use carnitine. 31 December 2011 [cited 2014 Nov 21] http://www.poliquingroup.com/articlesmultimedia/articles/article/767/top_12_reasons_to_use_carnitine.aspx

  27. Brass EP. Carnitine and sports medicine: use or abuse? Ann N Y Acad Sci. 2004;1033:67–78.

    Article  CAS  PubMed  Google Scholar 

  28. Karlic H, Lohninger A. Supplementation of L-carnitine in athletes: does it make sense? Nutrition. 2004;20:709–15.

    Article  CAS  PubMed  Google Scholar 

  29. Wächter S, Vogt M, Kreis R, Boesch C, Bigler P, Hoppeler H, et al. Long-term administration of L-carnitine to humans: effect on skeletal muscle carnitine content and physical performance. Clin Chim Acta. 2002;318:51–61.

    Article  PubMed  Google Scholar 

  30. Smith WA, Fry AC, Tschume LC, Bloomer RJ. Effect of glycine propionyl-l-carnitine on aerobic and anaerobic exercise performance. Int J Sport Nutr Exerc Metab. 2008;18:19–36.

    CAS  PubMed  Google Scholar 

  31. Stephens FB, Constantin-Teodosiu D, Laithwaite D, Simpson EJ, Greenhaff PL. Insulin stimulates L-carnitine accumulation in human skeletal muscle. FASEB J. 2005;20(2):377–9. doi:10.1096/fj.05-4985fje.

    PubMed  Google Scholar 

  32. Stephens FB, Constantin-Teodosiu D, Laithwaite D, Simpson EJ, Greenhaff PL. An acute increase in skeletal muscle carnitine content alters fuel metabolism in resting human skeletal muscle. J Clin Endocrinol Metab. 2006;91:5013–8.

    Article  CAS  PubMed  Google Scholar 

  33. Stephens FB, Evans CE, Constantin-Teodosiu D, Greenhaff PL. Carbohydrate ingestion augments L-carnitine retention in humans. J Appl Physiol. 2007;102:1065–70.

    Article  CAS  PubMed  Google Scholar 

  34. Wall BT, Stephens FB, Constantin-Teodosiu D, Marimuthu K, Macdonald I, Greenhaff PL. Chronic oral ingestion of L-carnitine and carbohydrate increases muscle carnitine content and alters muscle fuel metabolism during exercise in humans. J Physiol. 2011;589:963–73.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Stephens FB, Roig M, Armstrong G, Greenhaff PL. Post-exercise ingestion of a unique, high molecular weight glucose polymer solution improves performance during a subsequent bout of cycling exercise. J Sports Sci. 2008;26:149–54.

    Article  PubMed  Google Scholar 

  36. Shannon C, Nixon A, Greenhaff P, Stephens F. Protein ingestion impairs insulin-stimulated net muscle carnitine uptake in healthy young men. FASEB J. 2014;28:LB812.

    Google Scholar 

  37. Pal S, Ellis V. The acute effects of four protein meals on insulin, glucose, appetite and energy intake in lean men. Br J Nutr. 2010;104:1241–8.

    Article  CAS  PubMed  Google Scholar 

  38. Morifuji M, Ishizaka M, Baba S, Fukuda K, Matsumoto H, Koga J, et al. Comparison of different sources and degrees of hydrolysis of dietary protein: effect on plasma amino acids, dipeptides, and insulin responses in human subjects. J Agric Food Chem. 2010;58:8788–97.

    Article  CAS  PubMed  Google Scholar 

  39. Koeth RA, Wang Z, Levison BS, Buffa JA, Org E, Sheehy BT, et al. Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat Med. 2013;19:576–85.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Avison MJ, Rothman DL, Nadel E, Shulman RG. Detection of human muscle glycogen by natural abundance 13C NMR. Proc Natl Acad Sci U S A. 1988;85:1634–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Raper JA, Love LK, Paterson DH, Peters SJ, Heigenhauser GJF, Kowalchuk JM. Effect of high-fat and high-carbohydrate diets on pulmonary O2 uptake kinetics during the transition to moderate-intensity exercise. J Appl Physiol. 2014;117:1371–9.

    Article  CAS  PubMed  Google Scholar 

  42. Hansen M, Bangsbo J, Jensen J, Bibby BM, Madsen K. Effect of whey protein hydrolysate on performance and recovery of top-class orienteering runners. Int J Sport Nutr Exerc Metab. Metab. 2015;25:97–109.

    Google Scholar 

  43. Scott AT, O’Leary T, Walker S, Owen R. Improvement of 2000-m rowing performance with caffeinated carbohydrate-gel ingestion. Int J Sports Physiol Perf. 2015;10:464–8.

    Google Scholar 

  44. Helms ER, Zinn C, Rowlands DS, Naidooa R, Cronin J. High-protein low-fat short-term diet results in less stress and fatigue than moderate-protein moderate-fat diet during weight loss in male weightlifters, a pilot study. Int J Sport Nutr Exerc Metab. 2015;25:163–70.

    Google Scholar 

  45. Hill JC, San MI. Validation of musculoskeletal ultrasound to assess and quantify muscle glycogen content. a novel approach. Phys Sportsmed. 2014;42:45–52.

    Article  PubMed  Google Scholar 

  46. Jenkins DJA, Wolever TMS, Taylor RH, Barker H, Fielden H, Baldwin JM, et al. Glycemic index of foods: a physiological basis for carbohydrate exchange. Am J Clin Nutr. 1981;34:362–6.

    CAS  PubMed  Google Scholar 

  47. Schenk S, Davidson CJ, Zderic TW, Byerley LO, Coyle EF. Different glycemic indexes of breakfast cereals are not due to glucose entry into blood but to glucose removal by tissue. Am J Clin Nutr. 2003;78:742–8.

    CAS  PubMed  Google Scholar 

  48. Jenkins DJA, Wolever TMS, Taylor RH, Barker HM, Fielden H, Gassull MA. Lack of effect of refining on the glycemic response to cereals. Diabetes Care. 1981;4:509–13.

    Article  CAS  PubMed  Google Scholar 

  49. Stevenson EJ, Thelwall PE, Thomas K, Smith F, Brand-Miller J, Trenell MI. Dietary glycemic index influences lipid oxidation but not muscle or liver glycogen oxidation during exercise. Am J Physiol Endocrinol Metab. 2009;296:E1140–7.

    Article  CAS  PubMed  Google Scholar 

  50. Mondazzi L, Arcelli E. Glycemic index in sport nutrition. J Am Coll Nutr. 2009;28Suppl:455S-63S.

    Google Scholar 

  51. Roberts MD, Lockwood C, Dalbo VJ, Volek J, Kerksick CM. Ingestion of a high-molecular-weight hydrothermally modified waxy maize starch alters metabolic responses to prolonged exercise in trained cyclists. Nutrition. 2011;27:659–65.

    Article  CAS  PubMed  Google Scholar 

  52. Harris RC, Soderlund K, Hultman E. Elevation of creatine in resting and exercised muscle of normal subjects by creatine supplementation. Clin Sci. 1992;83:367–74.

    Article  CAS  PubMed  Google Scholar 

  53. Deldicque L, Decombaz J, Foncea HZ, Vuichoud J, Poortmans JR, Francaux M. Kinetics of creatine ingested as a food ingredient. Eur J Appl Physiol. 2008;102:133–43.

    Article  CAS  PubMed  Google Scholar 

  54. MacNeil L, Hill L, MacDonald D, Keefe L, Cormier JF, Burke DG, et al. Analysis of creatine, creatinine, creatine-d3 and creatinine-d3 in urine, plasma, and red blood cells by HPLC and GC-MS to follow the fate of ingested creatine-d3. J Chromatogr B. 2005;827:210–5.

    Article  CAS  Google Scholar 

  55. Jagim AR, Oliver JM, Sanchez A, Galvan E, Fluckey J, Riechman S, et al. A buffered form of creatine does not promote greater changes in muscle creatine content, body composition, or training adaptations than creatine monohydrate. J Int Soc Sports Nutr. 2012;9:43.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Green AL, Hultman E, Macdonald IA, Sewell DA, Greenhaff PL. Carbohydrate ingestion augments skeletal muscle creatine accumulation during creatine supplementation in humans. Am J Physiol Endocrinol Metab. 1996;271:E821–6.

    CAS  Google Scholar 

  57. Green AL, Simpson EJ, Littlewood JJ, Macdonald IA, Greenhaff PL. Carbohydrate ingestion augments creatine retention during creatine feeding in humans. Acta Physiol Scand. 1996;158:195–202.

    Article  CAS  PubMed  Google Scholar 

  58. Kerksick CM, Wilborn CD, Campbell WI, Harvey TM, Marcello BM, Roberts MD, et al. The effects of creatine monohydrate supplementation with and without D-pinitol on resistance training adaptations. J Strength Cond Res. 2009;23:2673–82.

    Article  PubMed  Google Scholar 

  59. Miller DW. Oral bioavailability of creatine supplements: Is there room for improvement? International Society of Sports Nutrition Annual Conference; 2009 June 14–15; New Orleans, Louisiana.

    Google Scholar 

  60. Rascol O, Ferreira J, Negre-Pages L, Perez-Lloret S, Lacomblez L, Galitzky M, et al. A proof-of-concept, randomized, placebo-controlled, multiple cross-overs (n-of-1) study of naftazone in Parkinson’s disease. Fundam Clin Pharmacol. 2012;26:557–64.

    Article  CAS  PubMed  Google Scholar 

  61. Gill SR, Pop M, DeBoy RT, Eckburg PB, Turnbaugh PJ, Samuel BS, et al. Metagenomic analysis of the human distal gut microbiome. Science. 2006;312:1355–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. The Human Microbiome Project Consortium. A framework for human microbiome research. Nature. 2012;486:215–21.

    Article  Google Scholar 

  63. Turnbaugh PJ, Gordon JI. The core gut microbiome, energy balance and obesity. J Physiol. 2009;587:4153–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. Greiner AK, Papineni RVL, Umar S. Chemoprevention in gastrointestinal physiology and disease. Natural products and microbiome. Am J Physiol Gastrointest Liver Physiol. 2014;307:G1–15.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  65. Ridaura VK, Faith JJ, Rey FE, Cheng J, Duncan AE, Kau AL, et al. Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science. 2013. doi:10.1126/science.1241214.

    PubMed Central  PubMed  Google Scholar 

  66. Wang Y, Tang H, Nicholson JK, Hylands PJ, Sampson J, Holmes E. A metabonomic strategy for the detection of the metabolic effects of chamomile (Matricaria recutita L.) ingestion. J Agric Food Chem. 2005;53:191–6.

    Article  CAS  PubMed  Google Scholar 

  67. Liu X, Blouin JM, Santacruz A, Lan A, Andriamihaja M, Wilkanowicz S, et al. High-protein diet modifies colonic microbiota and luminal environment but not colonocyte metabolism in the rat model: the increased luminal bulk connection. Am J Physiol Gastrointest Liver Physiol. 2014;307:G459–70.

    Article  CAS  PubMed  Google Scholar 

  68. Scott KP, Gratz SW, Sheridan PO, Flint HJ, Duncan SH. The influence of diet on the gut microbiota. Pharmacol Res. 2013;69:52–60.

    Article  CAS  PubMed  Google Scholar 

  69. Lan A, Andriamiha M, Blouin JM, Liu X, Descatoire V, Desclée de Maredsous C, et al. High-protein diet differently modifies intestinal goblet cell characteristics and mucosal cytokine expression in ileum and colon. J Nutr Biochem. 2015;26:91–8.

    Article  CAS  PubMed  Google Scholar 

  70. van Wijck K, Lenaerts K, Grootjans J, Wijnands KAP, Poeze M, van Loon LJC, et al. Physiology and pathophysiology of splanchnic hypoperfusion and intestinal injury during exercise: strategies for evaluation and prevention. Am J Physiol Gastrointest Liver Physiol. 2012;303:G155–68.

    Article  PubMed  Google Scholar 

  71. van Wijck K, Pennings B, van Bijnen AA, Senden JM, Buurman WA, Dejong CH, et al. Dietary protein digestion and absorption are impaired during acute postexercise recovery in young men. Am J Physiol Regul Integr Comp Physiol. 2013;304:R356–61.

    Article  PubMed  Google Scholar 

  72. van Wijck K, Wijnands KAP, Meesters DM, Boonen B, van Loon LJC, Buurman WA, et al. L-citrulline improves splanchnic perfusion and reduces gut injury during exercise. Med Sci Sports Exerc. 2014;46:2039–46.

    Article  PubMed  Google Scholar 

  73. World Economic Forum. Global Risks 2014, 9 Ed. Geneva; 2013 Dec 30. 60 p.

    Google Scholar 

  74. Weston S. Nestlé opens water-efficient Cero Agua dairy factory in Mexico. 22 Oct 2014 [cited 2014 Dec 10] http://www.foodbev.com/news/nestl-opens-water-efficient-cero-agua-da#.VI3kQqYYt5x

  75. Popp A, Lotze-Campen H, Bodirsky B. Food consumption, diet shifts and associated non-CO2 greenhouse gases from agricultural production. Glob Environ Change. 2010;20:451–62.

    Article  Google Scholar 

  76. Bellarby J, Tirado R, Leip A, Weiss F, Lesschen JP, Smith P. Livestock greenhouse gas emissions and mitigation potential in Europe. Glob Chang Biol. 2013;19:3–18.

    Article  PubMed  Google Scholar 

  77. Robinson SA, Erickson DJ. Not just about sunburn – the ozone hole’s profound effect on climate has significant implications for Southern Hemisphere ecosystems. Glob Chang Biol. 2015;21:515–27.

    Google Scholar 

  78. Joy JM, Lowery RP, Wilson JM, Purpura M, De Souza EO, Wilson SMC, et al. The effects of 8 weeks of whey or rice protein supplementation on body composition and exercise performance. Nutr J. 2013;12:86.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  79. Crowe MJ, Weatherson JN, Bowden BF. Effects of dietary leucine supplementation on exercise performance. Eur J Appl Physiol. 2006;97:664–72.

    Article  CAS  PubMed  Google Scholar 

  80. Ispoglou T, King RF, Polman RC, Zanker C. Daily L-leucine supplementation in novice trainees during a 12-week weight training program. Int J Sports Physiol Perform. 2011;6:38–50.

    PubMed  Google Scholar 

  81. Areta JL, Burke LM, Ross ML, Camera DM, West DWD, Broad EM, et al. Timing and distribution of protein ingestion during prolonged recovery from resistance exercise alters myofibrillar protein synthesis. J Physiol. 2013;591:2319–31.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  82. Witard OC, Jackman SR, Breen L, Smith K, Selby A, Tipton KD. Myofibrillar muscle protein synthesis rates subsequent to a meal in response to increasing doses of whey protein at rest and after resistance exercise. Am J Clin Nutr. 2014;99:86–95.

    Article  CAS  PubMed  Google Scholar 

  83. Moore DR, Churchward-Venne TA, Witard O, Breen L, Burd NA, Tipton KD, et al. Protein ingestion to stimulate myofibrillar protein synthesis requires greater relative protein intakes in healthy older versus younger men. J Gerontol A Biol Sci Med Sci. 2014;70:57–62.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony L. Almada MSc, FISSN .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Almada, A.L. (2015). Beyond the Obvious: Future Innovations in Sports Nutrition. In: Greenwood, M., Cooke, M., Ziegenfuss, T., Kalman, D., Antonio, J. (eds) Nutritional Supplements in Sports and Exercise. Springer, Cham. https://doi.org/10.1007/978-3-319-18230-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18230-8_16

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18229-2

  • Online ISBN: 978-3-319-18230-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics