Skip to main content

Carbohydrate Utilization and Disposal in Strength/Power Training and Sports: Examining the Underexamined

  • Chapter
Nutritional Supplements in Sports and Exercise

Abstract

Since the seminal work of Bergström and Hultman almost 50 years ago, a plethora of studies have focused upon carbohydrate utilization and disposal, predominantly in the context of endurance training and competition. Surprisingly, despite carbohydrate (primarily glycogen) being a predominant fuel substrate in strength/power training and sports, a relative paucity of data exists. The advent of low carbohydrate, “keto,” “paleo,” and “train low, compete high” diets has ushered in a widely held belief that even moderate carbohydrate intake is unwarranted and may promote excessive lipogenesis among intensively training individuals. A perusal of the literature wherein muscle glycogen is inaccessible (e.g., McArdle’s disease) or quantified throughout exercise reveals substantial glycogenolysis during intense strength/power and high-intensity intermittent training, contrasted to a dearth of data regarding direct carbohydrate oxidation rates during such types of exercise. A greater understanding of carbohydrate flux and demands during strength/power training and sports may foster new investigations and applications, as well as accelerate training adaptations and performance.

Religion is like a pair of shoes…Find one that fits for you, but don’t make me wear your shoes.

— George Carlin, comedian

And faith, by its very definition, tends to be impervious to intellectual argument or academic criticism.

— Jon Krakauer, author

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Brooks GA. Bioenergetics of exercising humans. Compr Physiol. 2012;2:537–62.

    PubMed  Google Scholar 

  2. Tarnopolsky MA, Atkinson SA, MacDougall JD, Senor BB, Lemon PW, Schwarcz H. Whole-body leucine metabolism during and after resistance exercise in fed humans. Med Sci Sports Exerc. 1991;23:326–33.

    Article  CAS  PubMed  Google Scholar 

  3. Moore DR, Del Bel NC, Nizi KI, Hartman JW, Tang JE, Armstrong D, et al. Resistance training reduces fasted- and fed-state leucine turnover and increases dietary nitrogen retention in previously untrained young men. J Nutr. 1997;137:985–91.

    Google Scholar 

  4. Tessari P, Garibotto G, Inchiostro S, Robaudo C, Saffioti S, Vettore M, et al. Kidney, splanchnic, and leg protein turnover in humans. J Clin Invest. 1996;98:1481–92.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Hultman E, Greenhaff PL, Ren JM, Söderlund K. Energy metabolism and fatigue during intense muscle contraction. Biochem Soc Trans. 1991;19:347–53.

    Article  CAS  PubMed  Google Scholar 

  6. Gaitanos GC, Williams C, Boobis LH, Brooks S. Human muscle metabolism during intermittent maximal exercise. J Appl Physiol. 1993;75:712–9.

    CAS  PubMed  Google Scholar 

  7. Sahlin K, Tonkonogi M, Söderlund K. Energy supply and muscle fatigue in humans. Acta Physiol Scand. 1998;162:261–6.

    Article  CAS  PubMed  Google Scholar 

  8. Delanghe J, De Slypere JP, De Buyzere M, Robbrecht J, Wieme R, Vermeulen A. Normal reference values for creatine, creatinine, and carnitine are lower in vegetarians. Clin Chem. 1989;35:1802–3.

    CAS  PubMed  Google Scholar 

  9. Watt KK, Garnham AP, Snow RJ. Skeletal muscle total creatine content and creatine transporter gene expression in vegetarians prior to and following creatine supplementation. Int J Sport Nutr Exerc Metab. 2004;14:517–31.

    CAS  PubMed  Google Scholar 

  10. Burke DG, Chilibeck PD, Parise G, Candow DG, Mahoney D, Tarnopolsky M. Effect of creatine and weight training on muscle creatine and performance in vegetarians. Med Sci Sports Exerc. 2003;35:1946–55.

    Article  CAS  PubMed  Google Scholar 

  11. Nabuurs CI, Choe CU, Veltien A, Kan HE, van Loon LJC, Rodenburg RJT, et al. Disturbed energy metabolism and muscular dystrophy caused by pure creatine deficiency are reversible by creatine intake. J Physiol. 2013;591:571–92.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Choe CU, Atzler D, Wild PS, Carter AM, Böger RH, Ojeda F, et al. Homoarginine levels are regulated by L-arginine:glycine amidinotransferase and affect stroke outcome: results from human and murine studies. Circulation. 2013;128:1451–61.

    Article  CAS  PubMed  Google Scholar 

  13. Wallimann T, Wyss M, Brdiczka D, Nicolay K, Eppenberger HM. Intracellular compartmentation, structure and function of creatine kinase isoenzymes in tissues with high and fluctuating energy demands: the ‘phosphocreatine circuit’ for cellular energy homeostasis. Biochem J. 1992;281:21–40.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Harris R, Söderlund K, Hultman E. Elevation of creatine in resting and exercised muscle of normal subjects by creatine supplementation. Clin Sci. 1992;83:367–74.

    Article  CAS  PubMed  Google Scholar 

  15. Sahlin K, Harris RC. The creatine kinase reaction: a simple reaction with functional complexity. Amino Acids. 2011;405:1363–7.

    Article  Google Scholar 

  16. Wyss M, Kaddurah-Daouk R. Creatine and creatinine metabolism. Physiol Rev. 2000;80:1107–213.

    CAS  PubMed  Google Scholar 

  17. Maughan RJ, Greenhaff PL, Hespel P. Dietary supplements for athletes: emerging trends and recurring themes. J Sports Sci. 2011;29(Suppl1):S57–66.

    Article  PubMed  Google Scholar 

  18. Hermansen L, Hultman E, Saltin B. Muscle glycogen during prolonged severe exercise. Acta Physiol Scand. 1967;71:129–39.

    Article  CAS  PubMed  Google Scholar 

  19. Tesch PA, Colliander EB, Kaiser P. Muscle metabolism during intense, heavy-resistance exercise. Eur J Appl Physiol Occup Physiol. 1986;55:362–6.

    Article  CAS  PubMed  Google Scholar 

  20. McArdle B. Myopathy due to a defect in muscle glycogen breakdown. Clin Sci. 1951;10:13–33.

    CAS  PubMed  Google Scholar 

  21. Beynon RJ, Bartram C, Hopkins P, Toescu V, Gibson H, Phoenix J, et al. McArdle’s disease: molecular genetics and metabolic consequences of the phenotype. Muscle Nerve. 1995;3:S18–22.

    Article  CAS  PubMed  Google Scholar 

  22. Nielsen JN, Vissing J, Wojtaszewski JFP, Haller RG, Begum N, Richter EA. Decreased insulin action in skeletal muscle from patients with McArdle’s disease. Am J Physiol Endocrinol Metab. 2002;282:E1267–75.

    Article  CAS  PubMed  Google Scholar 

  23. Vissing J, Duno M, Schwartz M, Haller RG. Splice mutations preserve myophosphorylase activity that ameliorates the phenotype in McArdle disease. Brain. 2009;132:1545–52.

    Article  PubMed  Google Scholar 

  24. Pearson CM, Rimer DG, Mommaerts WF. A metabolic myopathy due to absence of muscle phosphorylase. Am J Med. 1961;30:502–17.

    Article  CAS  PubMed  Google Scholar 

  25. Kitaoka Y, Ogborn DI, Mocellin NJ, Schlattner U, Tarnopolsky M. Monocarboxylate transporters and mitochondrial creatine kinase protein content in McArdle disease. Mol Genet Metab. 2013;108:259–62.

    Article  CAS  PubMed  Google Scholar 

  26. Kushner RF, Berman SA. Are high-protein diets effective in McArdle’s disease? Arch Neurol. 1990;47:383–4.

    Article  CAS  PubMed  Google Scholar 

  27. MacLean D, Vissing J, Vissing SF, Haller RG. Oral branched-chain amino acids do not improve exercise capacity in McArdle disease. Neurology. 1998;51:1456–9.

    Article  CAS  PubMed  Google Scholar 

  28. Andersen ST, Vissing J. Carbohydrate- and protein-rich diets in McArdle disease: effects on exercise capacity. J Neurol Neurosurg Psychiatry. 2008;79:1359–63.

    Article  CAS  PubMed  Google Scholar 

  29. Andersen ST, Jeppesen TD, Taivassalo T, Sveen ML, Heinicke K, Haller RG, et al. Effect of changes in fat availability on exercise capacity in McArdle disease. Arch Neurol. 2009;66:762–6.

    Article  PubMed  Google Scholar 

  30. Ørngreen MC, Jeppesen TD, Tvede Andersen S, Taivassalo T, Hauerslev S, Preisler N, et al. Fat metabolism during exercise in patients with McArdle disease. Neurology. 2009;72:718–24.

    Article  PubMed  Google Scholar 

  31. Haller RG, Vissing J. Spontaneous “second wind” and glucose-induced second “second wind” in McArdle disease: oxidative mechanisms. Arch Neurol. 2002;59:1395–402.

    Article  PubMed  Google Scholar 

  32. Phinney SD. Ketogenic diets and physical performance. Nutr Metab. 2004;1:2.

    Article  Google Scholar 

  33. Quinlivan R, Martinuzzi A, Schoser B. Pharmacological and nutritional treatment for McArdle disease (Glycogen Storage Disease type V). Cochrane Database Syst Rev. 2010;12, CD003458.

    PubMed  Google Scholar 

  34. Vezina JW, Der Ananian CA, Campbell KD, Meckes N, Ainsworth BE. An examination of the differences between two methods of estimating energy expenditure in resistance training activities. J Strength Cond Res. 2014;28:1026–31.

    PubMed  Google Scholar 

  35. Tesch PA, Colliander EB, Kaiser P. Muscle metabolism during intense, heavy-resistance exercise. Eur J Appl Physiol Occup Physiol. 1986;55:262–6.

    Article  Google Scholar 

  36. Essén-Gustavsson B, Tesch PA. Glycogen and triglyceride utilization in relation to muscle metabolic characteristics in men performing heavy-resistance exercise. Eur J Appl Physiol Occup Physiol. 1990;61:5–10.

    Article  PubMed  Google Scholar 

  37. Creer A, Gallagher P, Slivka D, Jemiolo B, Fink W, Trappe S. Influence of muscle glycogen availability on ERK1/2 and Akt signaling after resistance exercise in human skeletal muscle. J Appl Physiol. 2005;99:950–6.

    Article  CAS  PubMed  Google Scholar 

  38. Koopman R, Manders RJ, Jonkers RA, Hul GB, Kuipers H, van Loon LJ. Intramyocellular lipid and glycogen content are reduced following resistance exercise in untrained healthy males. Eur J Appl Physiol. 2006;96:525–34.

    Article  CAS  PubMed  Google Scholar 

  39. Harber MP, Crane JD, Douglass MD, Weindel KD, Trappe TA, Trappe SW, et al. Resistance exercise reduces muscular substrates in women. Int J Sports Med. 2008;29:719–25.

    Article  CAS  PubMed  Google Scholar 

  40. Shepherd SO, Cocks M, Tipton KD, Witard OC, Ranasinghe AM, Barker TA, et al. Resistance training increases skeletal muscle oxidative capacity and net intramuscular triglyceride breakdown in type I and II fibres of sedentary males. Exp Physiol. 2014;99:894–908.

    Article  CAS  PubMed  Google Scholar 

  41. Stellingwerff T, Boon H, Jonkers RA, Senden JM, Spriet LL, Koopman R, et al. Significant intramyocellular lipid use during prolonged cycling in endurance-trained males as assessed by three different methodologies. Am J Physiol Endocrinol Metab. 2007;292:E1715–23.

    Article  CAS  PubMed  Google Scholar 

  42. Robergs RA, Pearson DR, Costill DL, Fink WJ, Pascoe DD, Benedict MA, et al. Muscle glycogenolysis during differing intensities of weight-resistance exercise. J Appl Physiol. 1991;70:1700–6.

    CAS  PubMed  Google Scholar 

  43. MacDougall JD, Ray S, McCartney N, Sale D, Lee P, Garner S. Substrate utilization during weightlifting. Med Sci Sports Exerc. 1988;20:S66.

    Article  Google Scholar 

  44. MacDougall JD, Ray S, Sale DG, McCartney N, Lee P, Garner S. Muscle substrate utilization and lactate production. Can J Appl Physiol. 1999;24:209–15.

    Article  CAS  PubMed  Google Scholar 

  45. Haff GG, Koch AJ, Potteiger JA, Kuphal KE, Magee LM, Green SB, et al. Carbohydrate supplementation attenuates muscle glycogen loss during acute bouts of resistance exercise. Int J Sport Nutr Exerc Metab. 2000;10:326–39.

    CAS  PubMed  Google Scholar 

  46. Churchley EG, Coffey VG, Pedersen DJ, Shield A, Carey KA, Cameron-Smith D, et al. Influence of preexercise muscle glycogen content on transcriptional activity of metabolic and myogenic genes in well-trained humans. J Appl Physiol. 2007;102:1604–11.

    Article  CAS  PubMed  Google Scholar 

  47. Lakomy HKA. The use of a non-motorised treadmill for analyzing sprint performance. Ergonomics. 1987;3:627–37.

    Article  Google Scholar 

  48. Gollnick PD, Armstrong RB, Sembrowich WL, Shepherd RE, Saltin B. Glycogen depletion pattern in human skeletal muscle fibers after heavy exercise. J Appl Physiol. 1973;34:615–8.

    CAS  PubMed  Google Scholar 

  49. MacDougall JD, Ward GR, Sutton JR. Muscle glycogen repletion after high-intensity intermittent exercise. J Appl Physiol. 1977;42:129–32.

    CAS  PubMed  Google Scholar 

  50. McCartney N, Spriet LL, Heigenhauser GJ, Kowalchuk JM, Sutton JR, Jones NL. Muscle power and metabolism in maximal intermittent exercise. J Appl Physiol. 1986;60:1164–9.

    CAS  PubMed  Google Scholar 

  51. Parolin ML, Chesley A, Matsos MP, Spriet LL, Jones NL, Heigenhauser GJF. Regulation of skeletal muscle glycogen phosphorylase and PDH during maximal intermittent exercise. Am J Physiol Endocrinol Metab. 1999;277:E890–900.

    CAS  Google Scholar 

  52. Symons JD, Jacobs I. High-intensity exercise performance is not impaired by low intramuscular glycogen. Med Sci Sports Exerc. 1989;21:550–7.

    Article  CAS  PubMed  Google Scholar 

  53. Balsom PD, Gaitanos GC, Soderlund K, Ekblom B. High-intensity exercise and muscle glycogen availability in humans. Acta Physiol Scand. 1999;165:337–45.

    Article  CAS  PubMed  Google Scholar 

  54. Phinney SD, Bistrian BR, Evans WJ, Gervino E, Blackburn GL. The human metabolic response to chronic ketosis without caloric restriction: preservation of submaximal exercise capability with reduced carbohydrate oxidation. Metabolism. 1983;32:769–76.

    Article  CAS  PubMed  Google Scholar 

  55. Lambert EV, Speechly DP, Dennis SC, Noakes TD. Enhanced endurance in trained cyclists during moderate intensity exercise following 2 weeks adaptation to a high fat diet. Eur J Appl Physiol Occup Physiol. 1994;69:287–93.

    Article  CAS  PubMed  Google Scholar 

  56. Havemann L, West SJ, Goedecke JH, Macdonald IA, St Clair Gibson A, Noakes TD, et al. Fat adaptation followed by carbohydrate loading compromised high-intensity sprint performance. J Appl Physiol. 2006;100:194–202.

    Article  CAS  PubMed  Google Scholar 

  57. Fleming J, Sharman MJ, Avery NG, Love DM, Gomez AL, Scheett TP, et al. Endurance capacity and high-intensity exercise performance responses to a high fat diet. Int J Sport Nutr Exerc Metab. 2003;13:466–78.

    CAS  PubMed  Google Scholar 

  58. Volek JS, Sharman MJ, Love DM, Avery NG, Gomez AL, Scheett TP, et al. Body composition and hormonal responses to a carbohydrate-restricted diet. Metabolism. 2002;51:864–70.

    Article  CAS  PubMed  Google Scholar 

  59. Phillips SM, van Loon LJ. Dietary protein for athletes: from requirements to optimum adaptation. J Sports Sci. 2011;29 Suppl 1:S29–38.

    Article  PubMed  Google Scholar 

  60. Vogt M, Puntschart A, Howald H, Mueller B, Mannhart C, Gfeller-Tuescher L, et al. Effects of dietary fat on muscle substrates, metabolism, and performance in athletes. Med Sci Sports Exerc. 2003;35:952–60.

    Article  CAS  PubMed  Google Scholar 

  61. Karelis AD, Smith JW, Passe DH, Peronnet F. Carbohydrate administration and exercise performance: what are the potential mechanisms involved? Sports Med. 2010;40:747–63.

    Article  PubMed  Google Scholar 

  62. Jeukendrup A. A step towards personalized sports nutrition: carbohydrate intake during exercise. Sports Med. 2014;44 Suppl 1:S25–33.

    Article  PubMed  Google Scholar 

  63. Lambert CP, Flynn MG, Boone JB, Michaud TJ, Rodriguez-Zayas J. Effects of carbohydrate feeding on multiple-bout resistance exercise. J Appl Sport Sci Res. 1991;5:192–7.

    Google Scholar 

  64. Anantaraman R, Carmines AA, Gaesser GA, Weltman A. Effects of carbohydrate supplementation on performance during 1 hour of high-intensity exercise. Int J Sports Med. 1995;16:461–5.

    Article  CAS  PubMed  Google Scholar 

  65. Haff GG, Stone MH, Warren BJ, Keith R, Johnson RL, Nieman DC, et al. The effect of carbohydrate supplementation on multiple sessions and bouts of resistance exercise. J Strength Cond Res. 1999;13:111–7.

    Google Scholar 

  66. Haff GG, Schroeder CA, Koch AJ, Kuphal KE, Comeau MJ, Potteiger JA. The effects of supplemental carbohydrate ingestion on intermittent isokinetic leg exercise. J Sports Med Phys Fitness. 2001;41:216–22.

    CAS  PubMed  Google Scholar 

  67. Kulik JR, Touchberry CD, Kawamori N, Blumert PA, Crum AJ, Haff GG. Supplemental carbohydrate ingestion does not improve performance of high-intensity resistance exercise. J Strength Cond Res. 2008;22:1101–7.

    Article  PubMed  Google Scholar 

  68. Wax B, Brown SP, Webb HE, Kavazis AN. Effects of carbohydrate supplementation on force output and time to exhaustion during static leg contractions superimposed with electromyostimulation. J Strength Cond Res. 2012;26:1717–23.

    PubMed  Google Scholar 

  69. Sousa M, Simões HG, Castro CC, Otaduy MC, Negrão CE, Pereira RM, et al. Carbohydrate supplementation increases intramyocellular lipid stores in elite runners. Metabolism. 2012;61:1189–96.

    Article  CAS  PubMed  Google Scholar 

  70. Wax B, Kavazis AN, Brown SP. Effects of supplemental carbohydrate ingestion during superimposed electromyostimulation exercise in elite weightlifters. J Strength Cond Res. 2013;27:3084–90.

    Article  PubMed  Google Scholar 

  71. Yoshida Y, Jain SS, McFarlan JT, Snook LA, Chabowski A, Bonen A. Exercise- and training-induced upregulation of skeletal muscle fatty acid oxidation are not solely dependent on mitochondrial machinery and biogenesis. J Physiol. 2013;591:4415–26.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Disclosure

The authors are employees of Vitargo Global Sciences, LLC, a company that markets carbohydrate-containing supplements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony L. Almada MSc, FISSN .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Almada, A.L., Barr, D. (2015). Carbohydrate Utilization and Disposal in Strength/Power Training and Sports: Examining the Underexamined. In: Greenwood, M., Cooke, M., Ziegenfuss, T., Kalman, D., Antonio, J. (eds) Nutritional Supplements in Sports and Exercise. Springer, Cham. https://doi.org/10.1007/978-3-319-18230-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18230-8_14

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18229-2

  • Online ISBN: 978-3-319-18230-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics