Skip to main content

Thermodynamics of Time Evolving Networks

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNIP,volume 9069)

Abstract

In this paper, we present a novel and effective method for better understanding the evolution of time-varying complex networks by adopting a thermodynamic representation of network structure. We commence from the spectrum of the normalized Laplacian of a network. We show that by defining the normalized Laplacian eigenvalues as the microstate occupation probabilities of a complex system, the recently developed von Neumann entropy can be interpreted as the thermodynamic entropy of the network. Then, we give an expression for the internal energy of a network and derive a formula for the network temperature as the ratio of change of entropy and change in energy. We show how these thermodynamic variables can be computed in terms of node degree statistics for nodes connected by edges. We apply the thermodynamic characterization to real-world time-varying networks representing complex systems in the financial and biological domains. The study demonstrates that the method provides an efficient tool for detecting abrupt changes and characterizing different stages in evolving network evolution.

Keywords

  • Thermodynamics
  • Time-varying networks
  • Von Neumann entropy
  • Internal energy
  • Temperature

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-18224-7_31
  • Chapter length: 10 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   54.99
Price excludes VAT (USA)
  • ISBN: 978-3-319-18224-7
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   69.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albert, R., Barabási, A.L.: Topology of evolving networks: Local events and universality. Physical Review Letters 85(24), 5234–5237 (2000)

    CrossRef  Google Scholar 

  2. Arbeitman, M., Furlong, E.E., Imam, F., Johnson, E., Null, B.H., Baker, B.S., Krasnow, M.A., Scott, M.P., Davis, R.W., White, K.P.: Gene expression during the life cycle of drosophila melanogaster. Science 297(5590), 2270–2275 (2002)

    CrossRef  Google Scholar 

  3. Braunstein, S., Ghosh, S., Severini, S.: The laplacian of a graph as a density matrix: A basic combinatorial approach to separability of mixed states. Annals of Combinatorics 10(3), 291–317 (2006)

    CrossRef  MATH  MathSciNet  Google Scholar 

  4. Chung, F.R.K.: Spectral Graph Theory. AMS (1997)

    Google Scholar 

  5. Delvenne, J.C., Libert, A.S.: Centrality measures and thermodynamic formalism for complex networks. Phys. Rev. E. 83(046117) (2011)

    Google Scholar 

  6. Estrada, E.: The Structure of Complex Networks: Theory and Applications. Oxford University Press (2011)

    Google Scholar 

  7. Estrada, E., Hatano, N.: Statistical-mechanical approach to subgraph centrality in complex networks. Chem. Phys. Lett. 439, 247–251 (2007)

    CrossRef  Google Scholar 

  8. Han, L., Escolano, F., Hancock, E.R., Wilson, R.C.: Graph characterizations from von neumann entropy. Pattern Recognition Letters 33, 1958–1967 (2012)

    CrossRef  Google Scholar 

  9. Mikulecky, D.C.: Network thermodynamics and complexity: a transition to relational systems theory. Computers & Chemistry 25, 369–391 (2001)

    CrossRef  Google Scholar 

  10. Newman, M.: The structure and function of complex networks. SIAM Review 45(2), 167–256 (2003)

    CrossRef  MATH  MathSciNet  Google Scholar 

  11. Passerini, F., Severini, S.: Quantifying complexity in networks: The von neumann entropy. Inthernational Journal of Agent Technologies and Systems 1, 58–67 (2008)

    CrossRef  Google Scholar 

  12. Peron, T.K.D., Rodrigues, F.A.: Collective behavior in financial markets. EPL 96(48004) (2011)

    Google Scholar 

  13. Song, L., Kolar, M., Xing, E.P.: Keller: estimating time-varying interactions between genes. Bioinformatics 25(12), 128–136 (2009)

    CrossRef  Google Scholar 

  14. Ye, C., Wilson, R.C., Comin, C.H., Costa, L.D.F., Hancock, E.R.: Approximate von neumann entropy for directed graphs. Phys. Rev. E. 89(052804) (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng Ye .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Ye, C., Torsello, A., Wilson, R.C., Hancock, E.R. (2015). Thermodynamics of Time Evolving Networks. In: Liu, CL., Luo, B., Kropatsch, W., Cheng, J. (eds) Graph-Based Representations in Pattern Recognition. GbRPR 2015. Lecture Notes in Computer Science(), vol 9069. Springer, Cham. https://doi.org/10.1007/978-3-319-18224-7_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18224-7_31

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18223-0

  • Online ISBN: 978-3-319-18224-7

  • eBook Packages: Computer ScienceComputer Science (R0)