Abstract
In this paper, we develop a new graph kernel by using the quantum Jensen-Shannon divergence and the discrete-time quantum walk. To this end, we commence by performing a discrete-time quantum walk to compute a density matrix over each graph being compared. For a pair of graphs, we compare the mixed quantum states represented by their density matrices using the quantum Jensen-Shannon divergence. With the density matrices for a pair of graphs to hand, the quantum graph kernel between the pair of graphs is defined by exponentiating the negative quantum Jensen-Shannon divergence between the graph density matrices. We evaluate the performance of our kernel on several standard graph datasets, and demonstrate the effectiveness of the new kernel.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Schölkopf, B., Smola, A.: Learning with Kernels. MIT Press (2002)
Haussler, D.: Convolution kernels on discrete structures. In: Technical Report UCS-CRL-99-10, Santa Cruz, CA, USA (1999)
Kashima, H., Tsuda, K., Inokuchi, A.: Marginalized kernels between labeled graphs. In: Proceedings of ICML, pp. 321–328 (2003)
Borgwardt, K.M., Kriegel, H.-P.: Shortest-path kernels on graphs. In: Proceedings of the IEEE International Conference on Data Mining, pp. 74–81 (2005)
Aziz, F., Wilson, R.C., Hancock, E.R.: Backtrackless walks on a graph. IEEE Transactions on Neural Networks and Learning Systems 24, 977–989 (2013)
Ren, P., Wilson, R.C., Hancock, E.R.: Graph characterization via ihara coefficients. IEEE Transactions on Neural Networks 22, 233–245 (2011)
Shervashidze, N., Schweitzer, P., van Leeuwen, E.J., Mehlhorn, K., Borgwardt, K.M.: Weisfeiler-lehman graph kernels. Journal of Machine Learning Research 1, 1–48 (2010)
Harchaoui, Z., Bach, F.: Image classification with segmentation graph kernels. In: Proceedings of CVPR (2007)
Bach, F.R.: Graph kernels between point clouds. In: Proceedings of ICML, pp. 25–32 (2008)
Bai, L., Ren, P., Hancock, E.R.: A hypergraph kernel from isomorphism tests. In: Proceedings of ICPR, pp. 3880–3885 (2014)
Bai, L., Hancock, E.R.: Graph kernels from the jensen-shannon divergence. Journal of Mathematical Imaging and Vision 47, 60–69 (2013)
Bai, L., Hancock, E.R.: Graph clustering using the jensen-shannon kernel. In: Real, P., Diaz-Pernil, D., Molina-Abril, H., Berciano, A., Kropatsch, W. (eds.) CAIP 2011, Part I. LNCS, vol. 6854, pp. 394–401. Springer, Heidelberg (2011)
Bai, L., Hancock, E.R., Ren, P.: Jensen-shannon graph kernel using information functionals. In: Proceedings of ICPR, pp. 2877–2880 (2012)
Bai, L., Rossi, L., Torsello, A., Hancock, E.R.: A quantum jensen-shannon graph kernel for unattributed graphs. Pattern Recognition 48(2), 344–355 (2015)
Bai, L., Hancock, E.R., Torsello, A., Rossi, L.: A quantum jensen-shannon graph kernel using the continuous-time quantum walk. In: Kropatsch, W.G., Artner, N.M., Haxhimusa, Y., Jiang, X. (eds.) GbRPR 2013. LNCS, vol. 7877, pp. 121–131. Springer, Heidelberg (2013)
Rossi, L., Torsello, A., Hancock, E.R.: A continuous-time quantum walk kernel for unattributed graphs. In: Kropatsch, W.G., Artner, N.M., Haxhimusa, Y., Jiang, X. (eds.) GbRPR 2013. LNCS, vol. 7877, pp. 101–110. Springer, Heidelberg (2013)
Lamberti, P., Majtey, A., Borras, A., Casas, M., Plastino, A.: Metric character of the quantum jensen-shannon divergence. Physical Review AÂ 77, 052311 (2008)
Majtey, A., Lamberti, P., Prato, D.: Jensen-shannon divergence as a measure of distinguishability between mixed quantum states. Physical Review AÂ 72, 052310 (2005)
Farhi, E., Gutmann, S.: Quantum computation and decision trees. Physical Review AÂ 58, 915 (1998)
Ren, P., Aleksic, T., Emms, D., Wilson, R.C., Hancock, E.R.: Quantum walks, ihara zeta functions and cospectrality in regular graphs. Quantum Information Process 10, 405–417 (2011)
Emms, D., Severini, S., Wilson, R.C., Hancock, E.R.: Coined quantum walks lift the cospectrality of graphs and trees. Pattern Recognition 42, 1988–2002 (2009)
L.G.: A fast quantum mechanical algorithm for database search. In: Proceedings of ACM Symposium on the Theory of Computation, pp. 212–219 (1996)
Nielsen, M., Chuang, I.: Quantum computation and quantum information. Cambridge university press (2010)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Bai, L., Rossi, L., Ren, P., Zhang, Z., Hancock, E.R. (2015). A Quantum Jensen-Shannon Graph Kernel Using Discrete-Time Quantum Walks. In: Liu, CL., Luo, B., Kropatsch, W., Cheng, J. (eds) Graph-Based Representations in Pattern Recognition. GbRPR 2015. Lecture Notes in Computer Science(), vol 9069. Springer, Cham. https://doi.org/10.1007/978-3-319-18224-7_25
Download citation
DOI: https://doi.org/10.1007/978-3-319-18224-7_25
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-18223-0
Online ISBN: 978-3-319-18224-7
eBook Packages: Computer ScienceComputer Science (R0)