Skip to main content

A Quantum Jensen-Shannon Graph Kernel Using Discrete-Time Quantum Walks

  • Conference paper
Graph-Based Representations in Pattern Recognition (GbRPR 2015)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9069))

Abstract

In this paper, we develop a new graph kernel by using the quantum Jensen-Shannon divergence and the discrete-time quantum walk. To this end, we commence by performing a discrete-time quantum walk to compute a density matrix over each graph being compared. For a pair of graphs, we compare the mixed quantum states represented by their density matrices using the quantum Jensen-Shannon divergence. With the density matrices for a pair of graphs to hand, the quantum graph kernel between the pair of graphs is defined by exponentiating the negative quantum Jensen-Shannon divergence between the graph density matrices. We evaluate the performance of our kernel on several standard graph datasets, and demonstrate the effectiveness of the new kernel.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Schölkopf, B., Smola, A.: Learning with Kernels. MIT Press (2002)

    Google Scholar 

  2. Haussler, D.: Convolution kernels on discrete structures. In: Technical Report UCS-CRL-99-10, Santa Cruz, CA, USA (1999)

    Google Scholar 

  3. Kashima, H., Tsuda, K., Inokuchi, A.: Marginalized kernels between labeled graphs. In: Proceedings of ICML, pp. 321–328 (2003)

    Google Scholar 

  4. Borgwardt, K.M., Kriegel, H.-P.: Shortest-path kernels on graphs. In: Proceedings of the IEEE International Conference on Data Mining, pp. 74–81 (2005)

    Google Scholar 

  5. Aziz, F., Wilson, R.C., Hancock, E.R.: Backtrackless walks on a graph. IEEE Transactions on Neural Networks and Learning Systems 24, 977–989 (2013)

    Article  Google Scholar 

  6. Ren, P., Wilson, R.C., Hancock, E.R.: Graph characterization via ihara coefficients. IEEE Transactions on Neural Networks 22, 233–245 (2011)

    Article  Google Scholar 

  7. Shervashidze, N., Schweitzer, P., van Leeuwen, E.J., Mehlhorn, K., Borgwardt, K.M.: Weisfeiler-lehman graph kernels. Journal of Machine Learning Research 1, 1–48 (2010)

    Google Scholar 

  8. Harchaoui, Z., Bach, F.: Image classification with segmentation graph kernels. In: Proceedings of CVPR (2007)

    Google Scholar 

  9. Bach, F.R.: Graph kernels between point clouds. In: Proceedings of ICML, pp. 25–32 (2008)

    Google Scholar 

  10. Bai, L., Ren, P., Hancock, E.R.: A hypergraph kernel from isomorphism tests. In: Proceedings of ICPR, pp. 3880–3885 (2014)

    Google Scholar 

  11. Bai, L., Hancock, E.R.: Graph kernels from the jensen-shannon divergence. Journal of Mathematical Imaging and Vision 47, 60–69 (2013)

    Article  MATH  Google Scholar 

  12. Bai, L., Hancock, E.R.: Graph clustering using the jensen-shannon kernel. In: Real, P., Diaz-Pernil, D., Molina-Abril, H., Berciano, A., Kropatsch, W. (eds.) CAIP 2011, Part I. LNCS, vol. 6854, pp. 394–401. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  13. Bai, L., Hancock, E.R., Ren, P.: Jensen-shannon graph kernel using information functionals. In: Proceedings of ICPR, pp. 2877–2880 (2012)

    Google Scholar 

  14. Bai, L., Rossi, L., Torsello, A., Hancock, E.R.: A quantum jensen-shannon graph kernel for unattributed graphs. Pattern Recognition 48(2), 344–355 (2015)

    Article  Google Scholar 

  15. Bai, L., Hancock, E.R., Torsello, A., Rossi, L.: A quantum jensen-shannon graph kernel using the continuous-time quantum walk. In: Kropatsch, W.G., Artner, N.M., Haxhimusa, Y., Jiang, X. (eds.) GbRPR 2013. LNCS, vol. 7877, pp. 121–131. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  16. Rossi, L., Torsello, A., Hancock, E.R.: A continuous-time quantum walk kernel for unattributed graphs. In: Kropatsch, W.G., Artner, N.M., Haxhimusa, Y., Jiang, X. (eds.) GbRPR 2013. LNCS, vol. 7877, pp. 101–110. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  17. Lamberti, P., Majtey, A., Borras, A., Casas, M., Plastino, A.: Metric character of the quantum jensen-shannon divergence. Physical Review A 77, 052311 (2008)

    Google Scholar 

  18. Majtey, A., Lamberti, P., Prato, D.: Jensen-shannon divergence as a measure of distinguishability between mixed quantum states. Physical Review A 72, 052310 (2005)

    Google Scholar 

  19. Farhi, E., Gutmann, S.: Quantum computation and decision trees. Physical Review A 58, 915 (1998)

    Article  MathSciNet  Google Scholar 

  20. Ren, P., Aleksic, T., Emms, D., Wilson, R.C., Hancock, E.R.: Quantum walks, ihara zeta functions and cospectrality in regular graphs. Quantum Information Process 10, 405–417 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  21. Emms, D., Severini, S., Wilson, R.C., Hancock, E.R.: Coined quantum walks lift the cospectrality of graphs and trees. Pattern Recognition 42, 1988–2002 (2009)

    Article  MATH  Google Scholar 

  22. L.G.: A fast quantum mechanical algorithm for database search. In: Proceedings of ACM Symposium on the Theory of Computation, pp. 212–219 (1996)

    Google Scholar 

  23. Nielsen, M., Chuang, I.: Quantum computation and quantum information. Cambridge university press (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Bai, L., Rossi, L., Ren, P., Zhang, Z., Hancock, E.R. (2015). A Quantum Jensen-Shannon Graph Kernel Using Discrete-Time Quantum Walks. In: Liu, CL., Luo, B., Kropatsch, W., Cheng, J. (eds) Graph-Based Representations in Pattern Recognition. GbRPR 2015. Lecture Notes in Computer Science(), vol 9069. Springer, Cham. https://doi.org/10.1007/978-3-319-18224-7_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18224-7_25

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18223-0

  • Online ISBN: 978-3-319-18224-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics