Skip to main content

Wearable Electronics Sensors: Current Status and Future Opportunities

  • Chapter
Book cover Wearable Electronics Sensors

Part of the book series: Smart Sensors, Measurement and Instrumentation ((SSMI,volume 15))

Abstract

The technological advancement in the past three decades has impacted our lives and wellbeing significantly. Different aspects of monitoring our physiological parameters are considered. Wearable sensors are one of its most important areas that have an ongoing trend and have a huge tendency to rise in the future. The wearable sensors are the externally used devices attached to any individual to measure physiological parameters of interest. The range of wearable sensors varies from minuscule to large scaled devices physically fitted to the user operating on wired or wireless terms. Many common diseases affecting large number of people notably gait abnormalities, Parkinson’s disease are analysed by the wearable sensors. The use of wearable sensors has got a better prospect with improved technical qualities and a better understanding of the currently used research methodologies. This chapter deals with the overview of the current and past means of wearable sensors with its associated protocols used for communication. It concludes with the ways the currently dealt wearable sensors can be improved in future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lutz, W., Samir, K.C.: Dimensions of global population projections: what do we know about future population trends and structures? Philosophical Transactions of the Royal Society B: Biological Sciences 365(1554), 2779–2791 (2010)

    Article  Google Scholar 

  2. http://www2.stats.govt.nz/domino/external/web/prod_serv.nsf/092edeb76ed5aa6bcc256afe0081d84e/5977c54210e1abc7cc256dd600030457?OpenDocument

  3. Kang, J.M., Yoo, T., Kim, H.C.: A wrist-worn integrated health monitoring instrument with a tele-reporting device for telemedicine and telecare. IEEE Transactions on Instrumentation and Measurement 55(5), 1655–1661 (2006)

    Article  Google Scholar 

  4. Kim, D., Hilliges, O., Izadi, S., Butler, A.D., Chen, J., Oikonomidis, I., Olivier, P.: Digits: freehand 3D interactions anywhere using a wrist-worn gloveless sensor. In: Proceedings of the 25th Annual ACM Symposium on User Interface Software and Technology, pp. 167–176. ACM (2012)

    Google Scholar 

  5. Pittman, S.D., Ayas, N.T., MacDonald, M.M., Malhotra, A., Fogel, R.B., White, D.P.: Using a wrist-worn device based on peripheral arterial tonometry to diagnose obstructive sleep apnea: in-laboratory and ambulatory validation. Sleep 27(5), 923 (2004)

    Google Scholar 

  6. Sung, M., DeVaul, R., Jimenez, S., Gips, J., Pentland, A.: Shiver motion and core body temperature classification for wearable soldier health monitoring systems. In: Eighth International Symposium on Wearable Computers, ISWC 2004, vol. 1, pp. 192-193. IEEE (2004)

    Google Scholar 

  7. Goulermas, J.Y., Findlow, A.H., Nester, C.J., Liatsis, P., Zeng, X.-J., Kenney, L.P., Tresadern, P., Thies, S.B., Howard, D.: An instance-based algorithm with auxiliary similarity information for the estimation of gait kinematics from wearable sensors. IEEE Transactions on Neural Networks 19(9), 1574–1582 (2008)

    Article  Google Scholar 

  8. Mariani, B., Jiménez, M.C., Vingerhoets, F.J.G., Aminian, K.: On-shoe wearable sensors for gait and turning assessment of patients with Parkinson’s disease. IEEE Transactions on Biomedical Engineering 60(1), 155–158 (2013)

    Article  Google Scholar 

  9. Chelius, G., Braillon, C., Pasquier, M., Horvais, N., Gibollet, R.P., Espiau, B., Coste, C.A.: A wearable sensor network for gait analysis: A six-day experiment of running through the desert. IEEE/ASME Transactions on Mechatronics 16(5), 878–883 (2011)

    Article  Google Scholar 

  10. Winter, D.A., Patla, A.E., Frank, J.S., Walt, S.E.: Biomechanical walking pattern changes in the fit and healthy elderly. Physical Therapy 70(6), 340–347 (1990)

    Google Scholar 

  11. Mariani, B., Jiménez, M.C., Vingerhoets, F.J.G., Aminian, K.: On-shoe wearable sensors for gait and turning assessment of patients with Parkinson’s disease. IEEE Transactions on Biomedical Engineering 60(1), 155–158 (2013)

    Article  Google Scholar 

  12. Kurihara, Y., Watanabe, K., Yoneyama, M.: Estimation of walking exercise intensity using 3-D acceleration sensor. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews 42(4), 495–500 (2012)

    Article  Google Scholar 

  13. Bloem, B.R., Haan, J., Lagaay, A.M., van Beek, W., Wintzen, A.R., Roos, R.A.C.: Investigation of gait in elderly subjects over 88 years of age. Journal of Geriatric Psychiatry and Neurology 5(2), 78–84 (1992)

    Article  Google Scholar 

  14. Colledge, N.: Gait Disorders of Aging. Falls and Therapeutic Strategies. Journal of Neurology, Neurosurgery, and Psychiatry 64(4), 566 (1998)

    Article  Google Scholar 

  15. Sudarsky, L.: Clinical approach to gait disorders of aging: an overview. Gait disorders of aging. Lippincott-Raven, Philadelphia (1997)

    Google Scholar 

  16. Shaban, H.A., El-Nasr, M.A., Buehrer, R.M.: Toward a highly accurate ambulatory system for clinical gait analysis via UWB radios. IEEE Transactions on Information Technology in Biomedicine 14(2), 284–291 (2010)

    Article  Google Scholar 

  17. Elble, R.J., Sienko Thomas, S., Higgins, C., Colliver, J.: Stride-dependent changes in gait of older people. Journal of Neurology 238(1), 1–5 (1991)

    Article  Google Scholar 

  18. Hough, J.C., McHenry, M.P., Kammer, L.M.: Gait disorders in the elderly. American Family Physician 35(6), 191–196 (1987)

    Google Scholar 

  19. Alexander, N.B.: Differential diagnosis of gait disorders in older adults. Clinics in Geriatric Medicine 12(4), 689–703 (1996)

    Google Scholar 

  20. Shaltis, P.A., Reisner, A.T., Asada, H.H.: Cuffless blood pressure monitoring using hydrostatic pressure changes. IEEE Transactions on Bio-Medical Engineering 55(6), 1775–1777 (2008)

    Article  Google Scholar 

  21. Rotariu, C., Pasarica, A., Costin, H., Adochiei, F., Ciobotariu, R.: Telemedicine system for remote blood pressure and heart rate monitoring. In: E-Health and Bioengineering Conference (EHB), 2011, pp. 1–4. IEEE (2011)

    Google Scholar 

  22. Guo, L., Berglin, L., Li, Y.J., Mattila, H., Mehrjerdi, A.K., Skrifvars, M.: ‘Disappearing Sensor’-Textile Based Sensor for Monitoring Breathing. In: 2011 International Conference on Control, Automation and Systems Engineering (CASE), pp. 1–4. IEEE (2011)

    Google Scholar 

  23. Zito, D., Pepe, D., Mincica, M., Zito, F., Tognetti, A., Lanata, A., De Rossi, D.: SoC CMOS UWB pulse radar sensor for contactless respiratory rate monitoring. IEEE Transactions on Biomedical Circuits and Systems 5(6), 503–510 (2011)

    Article  Google Scholar 

  24. Wilhelm, F.H., Roth, W.T., Sackner, M.A.: The LifeShirt An Advanced System for Ambulatory Measurement of Respiratory and Cardiac Function. Behavior Modification 27(5), 671–691 (2003)

    Article  Google Scholar 

  25. Corbishley, P., Rodríguez-Villegas, E.: Breathing detection: towards a miniaturized, wearable, battery-operated monitoring system. IEEE Transactions on Biomedical Engineering 55(1), 196–204 (2008)

    Article  Google Scholar 

  26. Tapia, E.M., Intille, S.S., Haskell, W., Larson, K., Wright, J., King, A., Friedman, R.: Real-time recognition of physical activities and their intensities using wireless accelerometers and a heart rate monitor. In: 2007 11th IEEE International Symposium on Wearable Computers, pp. 37–40. IEEE (2007)

    Google Scholar 

  27. Devlin, R.B., Ghio, A.J., Kehrl, H., Sanders, G., Cascio, W.: Elderly humans exposed to concentrated air pollution particles have decreased heart rate variability. European Respiratory Journal 21(40 suppl.), 76s–80s (2003)

    Google Scholar 

  28. Yan, L., Bae, J., Lee, S., Roh, T., Song, K., Yoo, H.-J.: A 3.9 mW 25-electrode reconfigured sensor for wearable cardiac monitoring system. IEEE Journal of Solid-State Circuits 46(1), 353–364 (2011)

    Article  Google Scholar 

  29. Zhang, T.T., Ser, W., Daniel, G.Y.T., Zhang, J., Yu, J., Chua, C., Louis, I.M.: Sound based heart rate monitoring for wearable systems. In: 2010 International Conference on Body Sensor Networks (BSN), pp. 139–143. IEEE (2010)

    Google Scholar 

  30. Kastner, P., Morak, J., Modre, R., Kollmann, A., Ebner, C., Fruhwald, F.M., Schreier, G.: Innovative telemonitoring system for cardiology: from science to routine operation. Appl. Clin. Inf. 1(2), 165–176 (2010)

    Article  Google Scholar 

  31. Buske, O., Neils, C., Regnier, M.: Heartbeat: Design and Development of a Headphone

    Google Scholar 

  32. Tang, W., Sazonov, E.S.: Highly accurate recognition of human postures and activities through classification with rejection. IEEE Journal of Biomedical and Health Informatics 18(1), 309–315 (2014)

    Article  Google Scholar 

  33. Lopez-Meyer, P., Tiffany, S., Patil, Y., Sazonov, E.: Monitoring of cigarette smoking using wearable sensors and Support Vector Machines. IEEE Transactions on Biomedical Engineering 60(7), 1867–1872 (2013)

    Article  Google Scholar 

  34. Morris, D., Coyle, S., Wu, Y., Lau, K.T., Wallace, G., Diamond, D.: Bio-sensing textile based patch with integrated optical detection system for sweat monitoring. Sensors and Actuators B: Chemical 139(1), 231–236 (2009)

    Article  Google Scholar 

  35. Salvo, P., Di Francesco, F., Costanzo, D., Ferrari, C., Trivella, M.G., De Rossi, D.: A wearable sensor for measuring sweat rate. IEEE Sensors Journal 10(10), 1557–1558 (2010)

    Article  Google Scholar 

  36. Coyle, S., Morris, D., Lau, K.-T., Diamond, D., Di Francesco, F., Taccini, N., Trivella, M.G., et al.: Textile sensors to measure sweat pH and sweat-rate during exercise. In: 3rd International Conference on Pervasive Computing Technologies for Healthcare, PervasiveHealth 2009, pp. 1–6. IEEE (2009)

    Google Scholar 

  37. Pantelopoulos, A., Bourbakis, N.: A survey on wearable biosensor systems for health monitoring. In: 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS 2008, pp. 4887–4890. IEEE (2008)

    Google Scholar 

  38. Anliker, U., Ward, J.A., Lukowicz, P., Troster, G., Dolveck, F., Baer, M., Keita, F., et al.: AMON: a wearable multiparameter medical monitoring and alert system. IEEE Transactions on Information Technology in Biomedicine 8(4), 415–427 (2004)

    Article  Google Scholar 

  39. Axisa, F., Dittmar, A., Delhomme, G.: Smart clothes for the monitoring in real time and conditions of physiological, emotional and sensorial reactions of human. In: Proceedings of the 25th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, vol. 4, pp. 3744–3747. IEEE (2003)

    Google Scholar 

  40. Pandian, P.S., Mohanavelu, K., Safeer, K.P., Kotresh, T.M., Shakunthala, D.T., Gopal, P., Padaki, V.C.: Smart Vest: Wearable multi-parameter remote physiological monitoring system. Medical Engineering & Physics 30(4), 466–477 (2008)

    Article  Google Scholar 

  41. Gatzoulis, L., Iakovidis, I.: Wearable and portable eHealth systems. IEEE Engineering in Medicine and Biology Magazine 26(5), 51–56 (2007)

    Article  Google Scholar 

  42. Lukowicz, P., Anliker, U., Ward, J., Tröster, G., Hirt, E., Neufelt, C.: Amon: A wearable medical computer for high risk patients. In: 2012 16th International Symposium on Wearable Computers, pp. 133–133. IEEE Computer Society (2002)

    Google Scholar 

  43. Ma, Y.-C., Chao, Y.-P., Tsai, T.-Y.: Smart-clothes—Prototyping of a health monitoring platform. In: IEEE Third International Conference on Consumer Electronics?? Berlin (ICCE-Berlin), pp. 60–63. IEEE (2013)

    Google Scholar 

  44. Paradiso, R., Alonso, A., Cianflone, D., Milsis, A., Vavouras, T., Malliopoulos, C.: Remote health monitoring with wearable non-invasive mobile system: the healthwear project. In: 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS 2008, pp. 1699–1702. IEEE (2008)

    Google Scholar 

  45. Ermes, M., Parkka, J., Mantyjarvi, J., Korhonen, I.: Detection of daily activities and sports with wearable sensors in controlled and uncontrolled conditions. IEEE Transactions on Information Technology in Biomedicine 12(1), 20–26 (2008)

    Article  Google Scholar 

  46. Lee, S.-W., Mase, K.: Activity and location recognition using wearable sensors. IEEE Pervasive Computing 1(3), 24–32 (2002)

    Article  Google Scholar 

  47. Atallah, L., Lo, B., King, R., Yang, G.-Z.: Sensor positioning for activity recognition using wearable accelerometers. IEEE Transactions on Biomedical Circuits and Systems 5(4), 320–329 (2011)

    Article  Google Scholar 

  48. Ricquebourg, V., Menga, D., Durand, D., Marhic, B., Delahoche, L., Loge, C.: The smart home concept: our immediate future. In: 2006 1st IEEE International Conference on E-Learning in Industrial Electronics, pp. 23–28. IEEE (2006)

    Google Scholar 

  49. http://www.stats.govt.nz/browse_for_stats/people_and_communities/older_people/pop-ageing-in-nz.aspx

  50. Souri, K., Chae, Y., Makinwa, K.A.A.: A CMOS Temperature Sensor With a Voltage-Calibrated Inaccuracy of 0.15 C (3) From 55 C to 125 C. IEEE Journal of Solid-State Circuits 48(1), 292–301 (2013)

    Article  Google Scholar 

  51. http://www2.stats.govt.nz/domino/external/web/prod_serv.nsf/092edeb76ed5aa6bcc256afe0081d84e/5977c54210e1abc7cc256dd600030457?OpenDocument

  52. http://www.agingcare.com/Articles/What-is-normal-blood-pressure-for-elders-108019.htm

  53. Dunne, L.E., Walsh, P., Hermann, S., Smyth, B., Caulfield, B.: Wearable monitoring of seated spinal posture. IEEE Transactions on Biomedical Circuits and Systems 2(2), 97–105 (2008)

    Article  Google Scholar 

  54. Gibb, W.R., Lees, A.J.: The relevance of the Lewy body to the pathogenesis of idiopathic Parkinson’s disease. Journal of Neurology, Neurosurgery & Psychiatry 51(6), 745–752 (1988)

    Article  Google Scholar 

  55. Patel, S., Lorincz, K., Hughes, R., Huggins, N., Growdon, J., Standaert, D., Akay, M., Dy, J., Welsh, M., Bonato, P.: Monitoring motor fluctuations in patients with Parkinson’s disease using wearable sensors. IEEE Transactions on Information Technology in Biomedicine 13(6), 864–873 (2009)

    Article  Google Scholar 

  56. Chen, B.-R., Patel, S., Buckley, T., Rednic, R., McClure, D.J., Shih, L., Tarsy, D., Welsh, M., Bonato, P.: A web-based system for home monitoring of patients with Parkinson’s disease using wearable sensors. IEEE Transactions on Biomedical Engineering 58(3), 831–836 (2011)

    Article  Google Scholar 

  57. Rigas, G., Tzallas, A.T., Tsipouras, M.G., Bougia, P., Tripoliti, E.E., Baga, D., Fotiadis, D.I., Tsouli, S.G., Konitsiotis, S.: Assessment of tremor activity in the Parkinson’s disease using a set of wearable sensors. IEEE Transactions on Information Technology in Biomedicine 16(3), 478–487 (2012)

    Article  Google Scholar 

  58. http://fiji.eecs.harvard.edu/Mercury

  59. Shyr, T.-W., Shie, J.-W., Jiang, C.-H., Li, J.-J.: A Textile-Based Wearable Sensing Device Designed for Monitoring the Flexion Angle of Elbow and Knee Movements. Sensors 14(3), 4050–4059 (2014)

    Article  Google Scholar 

  60. Lee, G.X., Low, K.S., Taher, T.: Unrestrained measurement of arm motion based on a wearable wireless sensor network. IEEE Transactions on Instrumentation and Measurement 59(5), 1309–1317 (2010)

    Article  Google Scholar 

  61. Stupar, D.Z., Bajic, J.S., Manojlovic, L.M., Slankamenac, M.P., Joza, A.V., Zivanov, M.B.: Wearable low-cost system for human joint movements monitoring based on fiber-optic curvature sensor. IEEE Sensors Journal 12(12), 3424–3431 (2012)

    Article  Google Scholar 

  62. Zhang, Z.-Q., Wong, W.-C., Wu, J.-K.: Ubiquitous human upper-limb motion estimation using wearable sensors. IEEE Transactions on Information Technology in Biomedicine 15(4), 513–521 (2011)

    Article  Google Scholar 

  63. http://robinhsieh.com/?p=1115

  64. Choi, J., Gutierrez-Osuna, R.: Removal of respiratory influences from heart rate variability in stress monitoring. IEEE Sensors Journal 11(11), 2649–2656 (2011)

    Article  Google Scholar 

  65. Jovanov, E., Lords, A.O., Raskovic, D., Cox, P.G., Adhami, R., Andrasik, F.: Stress monitoring using a distributed wireless intelligent sensor system. IEEE Engineering in Medicine and Biology Magazine 22(3), 49–55 (2003)

    Article  Google Scholar 

  66. Choi, J., Gutierrez-Osuna, R.: Removal of respiratory influences from heart rate variability in stress monitoring. IEEE Sensors Journal 11(11), 2649–2656 (2011)

    Article  Google Scholar 

  67. http://www.trossenrobotics.com/flexiforce-1lb-resistive-force-sensor.aspx

  68. Loriga, G., Taccini, N., De Rossi, D., Paradiso, R.: Textile sensing interfaces for cardiopulmonary signs monitoring. In: 27th Annual International Conference of the Engineering in Medicine and Biology Society, IEEE-EMBS 2005, pp. 7349–7352. IEEE (2006)

    Google Scholar 

  69. http://www.sciencedaily.com/releases/2012/11/121108140845.htm

  70. http://www.heart.org/HEARTORG/Conditions/HighBloodPressure/AboutHighBloodPressure/Understanding-Blood-Pressure-Readings_UCM_301764_Article.jsp

  71. Cappuccio, F.P., Kerry, S.M., Forbes, L., Donald, A.: Blood pressure control by home monitoring: meta-analysis of randomised trials. BMJ 329(7458), 145 (2004)

    Article  Google Scholar 

  72. Rafert, S.C., Marble, D.R., Pelikan, G.W., Kahn, A.: Conformal pulse oximetry sensor and monitor. U.S. Patent 5,817,008 (issued October 6, 1998)

    Google Scholar 

  73. Haahr, R.G., Duun, S.B., Toft, M.H., Belhage, B., Larsen, J., Birkelund, K., Thomsen, E.V.: An electronic patch for wearable health monitoring by reflectance pulse oximetry. Biomedical Circuits and Systems 6(1), 45–53 (2012)

    Article  Google Scholar 

  74. Duun, S.B., Haahr, R.G., Birkelund, K., Thomsen, E.V.: A ring-shaped photodiode designed for use in a reflectance pulse oximetry sensor in wireless health monitoring applications. IEEE Sensors Journal 10(2), 261–268 (2010)

    Article  Google Scholar 

  75. Yan, Y.-S., Zhang, Y.-T.: An efficient motion-resistant method for wearable pulse oximeter. IEEE Transactions on Information Technology in Biomedicine 12(3), 399–405 (2008)

    Article  Google Scholar 

  76. Ahn, H.S., Sa, I.-K., Choi, J.-Y.: PDA-based mobile robot system with remote monitoring for home environment. IEEE Transactions on Consumer Electronics 55(3), 1487–1495 (2009)

    Article  Google Scholar 

  77. Korhonen, I., Parkka, J., Van Gils, M.: Health monitoring in the home of the future. IEEE Engineering in Medicine and Biology Magazine 22(3), 66–73 (2003)

    Article  Google Scholar 

  78. Mehta, D.D., Zanartu, M., Feng, S.W., Cheyne, H.A., Hillman, R.E.: Mobile voice health monitoring using a wearable accelerometer sensor and a smartphone platform. IEEE Transactions on Biomedical Engineering 59(11), 3090–3096 (2012)

    Article  Google Scholar 

  79. Tapia, E.M., Intille, S.S., Haskell, W., Larson, K., Wright, J., King, A., Friedman, R.: Real-time recognition of physical activities and their intensities using wireless accelerometers and a heart rate monitor. In: 2007 11th IEEE International Symposium on Wearable Computers, pp. 37–40. IEEE (2007)

    Google Scholar 

  80. Atallah, L., Lo, B., King, R., Yang, G.-Z.: Sensor positioning for activity recognition using wearable accelerometers. IEEE Transactions on Biomedical Circuits and Systems 5(4), 320–329 (2011)

    Article  Google Scholar 

  81. http://link.springer.com/article/10.1007/BF02351026

  82. http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0037062#pone-0037062-g004

  83. https://courses.cit.cornell.edu/ee476/FinalProjects/s2009/vlc6_ljs62/vlc6_ljs62/images/working/IMG_1941.JPG

  84. Chi, Y.M., Cauwenberghs, G.: Wireless non-contact EEG/ECG electrodes for body sensor networks. In: 2010 International Conference on Body Sensor Networks (BSN), pp. 297–301. IEEE (2010)

    Google Scholar 

  85. Alzaidi, A., Zhang, L., Bajwa, H.: Smart textiles based wireless ECG system. In: 2012 IEEE Long Island Systems, Applications and Technology Conference (LISAT), pp. 1–5. IEEE (2012)

    Google Scholar 

  86. Taji, B., Shirmohammadi, S., Groza, V., Bolic, M.: An ECG monitoring system using conductive fabric. In: 2013 IEEE International Symposium on Medical Measurements and Applications Proceedings (MeMeA), pp. 309–314. IEEE (2013)

    Google Scholar 

  87. Hoffmann, K.-P., Ruff, R.: Flexible dry surface-electrodes for ECG long-term monitoring. In: 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS 2007, pp. 5739–5742. IEEE (2007)

    Google Scholar 

  88. Ravanshad, N., Rezaee-Dehsorkh, H., Lotfi, R., Lian, Y.: A Level-Crossing Based QRS-Detection Algorithm for Wearable ECG Sensors. IEEE Journal of Biomedical and Health Informatics 18(1), 183–192 (2014)

    Article  Google Scholar 

  89. Biel, L., Pettersson, O., Philipson, L., Wide, P.: ECG analysis: a new approach in human identification. IEEE Transactions on Instrumentation and Measurement 50(3), 808–812 (2001)

    Article  Google Scholar 

  90. http://www.primedic.com/cms/upload/produkte/DefiMonitor-EVO_Optionen-1.jpg

  91. http://www.google.co.nz/imgres?imgurl=http://www.usc.edu/dept/engineering/summerprograms/assets/001/75386.jpg&imgrefurl=http://www.usc.edu/dept/engineering/summerprograms/anti-theft-device/group-3/anti-theft-device/important-concepts-and-ideas/&h=370&w=452&tbnid=YtwA_0vHgUmprM:&zoom=1&docid=vaJVRl5fTDr7gM&ei=IhL5VJymNYTemAXbzoGICg&tbm=isch&ved=0CB4QMygDMAM&biw=1920&bih=956

  92. http://www.intelligent-systems.info/biofeedback/biofeedback.htm

  93. Avci, A., Bosch, S., Marin-Perianu, M., Marin-Perianu, R., Havinga, P.: Activity recognition using inertial sensing for healthcare, wellbeing and sports applications: A survey. In: 2010 23rd International Conference on Architecture of Computing Systems (ARCS), pp. 1–10. VDE (2010)

    Google Scholar 

  94. http://www.olympic.org/national-olympic-committees

  95. http://www.engadget.com/2009/05/26/sensaris-wearable-sensor-promises-to-track-noise-and-air-quality/

  96. Suryadevara, N.K., Mukhopadhyay, S.C.: Wireless sensor network based home monitoring system for wellness determination of elderly. IEEE Sensors Journal 12(6), 1965–1972 (2012)

    Article  Google Scholar 

  97. Baker, C.R., Armijo, K., Belka, S., Benhabib, M., Bhargava, V., Burkhart, N., Der Minassians, A., et al.: Wireless sensor networks for home health care. In: 21st International Conference on Advanced Information Networking and Applications Workshops, AINAW 2007, vol. 2, pp. 832–837. IEEE (2007)

    Google Scholar 

  98. Axisa, F., Schmitt, P.M., Gehin, C., Delhomme, G., McAdams, E., Dittmar, A.: Flexible technologies and smart clothing for citizen medicine, home healthcare, and disease prevention. IEEE Transactions on Information Technology in Biomedicine 9(3), 325–336 (2005)

    Article  Google Scholar 

  99. Quigley, R., Taylor, R.: Does watching TV contribute to increased body weight and obesity in children?

    Google Scholar 

  100. Suryadevara, N.K., Mukhopadhyay, S.C.: Smart Homes: Design, Implementation and Issues. SIST, vol. 14. Springer, Heidelberg (2015)

    Google Scholar 

  101. Mukhopadhyay, S.: Wearable Sensors for Human Activity Monitoring: A Review (2015)

    Google Scholar 

  102. Suryadevara, N.K., Mukhopadhyay, S.C., Barrack, L.: Towards a Smart Non-Invasive Fluid Loss Measurement System. Journal of Medical Systems 39(4), 1–10 (2015)

    Article  Google Scholar 

  103. Suryadevara, N., Mukhopadhyay, S.: Determination of Wellness of an Elderly in an Ambient Assisted Living Environment, p. 1 (2014)

    Google Scholar 

  104. Suryadevara, N.K., Mukhopadhyay, S.C., Wang, R., Rayudu, R.K.: Forecasting the behavior of an elderly using wireless sensors data in a smart home. Engineering Applications of Artificial Intelligence 26(10), 2641–2652 (2013)

    Article  Google Scholar 

  105. Suryadevara, N.K., Gaddam, A., Rayudu, R.K., Mukhopadhyay, S.C.: Wireless sensors network based safe home to care elderly people: Behaviour detection. Sensors and Actuators A: Physical 186, 277–283 (2012)

    Article  Google Scholar 

  106. Malhi, K., Mukhopadhyay, S.C., Schnepper, J., Haefke, M., Ewald, H.: A Zigbee-based wearable physiological parameters monitoring system. IEEE Sensors Journal 12(3), 423–430 (2012)

    Article  Google Scholar 

  107. Bhardwaj, S., Lee, D.-S., Mukhopadhyay, S.C., Chung, W.-Y.: Ubiquitous healthcare data analysis and monitoring using multiple wireless sensors for elderly person. Sensor & Transducer Journal 90, 87–99 (2008)

    Google Scholar 

  108. Mukhopadhyay, S.C., Gaddam, A., Gupta, G.S.: Wireless sensors for home monitoring-a review. Recent Patents on Electrical & Electronic Engineering (Formerly Recent Patents on Electrical Engineering) 1(1), 32–39 (2008)

    Google Scholar 

  109. Suryadevara, N.K., Kelly, S., Mukhopadhyay, S.C.: Ambient Assisted Living Environment Towards Internet of Things Using Multifarious Sensors Integrated with XBee Platform. In: Mukhopadhyay, S.C. (ed.) Internet of Things. SSMI, vol. 9, pp. 217–231. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  110. Gaddam, A., Sen Gupta, G., Mukhopadhyay, S.C.: Human Behavior Recognition Technologies: Intelligent Applications for Monitoring and Security. In: Guesgen, H., Marsland, S. (eds.) Sensors for Smart Home, vol. 5, pp. 130–156. IGI Global (2013) ISBN 978-1-4666-3683-5

    Google Scholar 

  111. Mukhopadhyay, S.C., Suryadevara, N.K., Rayudu, R.K.: Are Technologies Assisted Homes Safer for the Elderly? In: Mukhopadhyay, S.C., Postolache, O.A. (eds.) Pervasive & Mob. Sens. & Comput. for Healthcare. SSMI, vol. 2, pp. 51–68. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  112. Nag, A., Mukhopadhyay, S.C.: Smart Home: Recognition of activities of elderly for 24/7; Coverage issues. In: Proceedings of the 2014 International Conference on Sensing Technology, Liverpool, UK, vol. 2, pp. 480–489 (2014)

    Google Scholar 

  113. Mukhopadhyay, S.C., Suryadevara, N.K.: Homes for Assisted Living: Smart Sensors, Instrumentation, Energy, Control and Communication Perspective. In: Proceedings of IEEE International Conference on Control, Instrumentation, Energy & Communication (CIEC), Kolkata, India, pp. 9–14 (2014)

    Google Scholar 

  114. Suryadevara, N.K., Mukhopadhyay, S.C., Wang, R., Rayudu, R.K., Huang, Y.M.: Reliable measurement of Wireless Sensor Network data for forecasting wellness of elderly at smart home. In: 2013 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), pp. 16–21. IEEE (2013)

    Google Scholar 

  115. Survadevara, N.K., Mukhopadhyay, S.C., Rayudu, R.K.: Applying SARIMA time series to forecast sleeping activity for wellness model of elderly monitoring in smart home. In: 2012 Sixth International Conference on Sensing Technology (ICST), pp. 157–162. IEEE (2012)

    Google Scholar 

  116. Suryadevara, N.K., Quazi, M.T., Mukhopadhyay, S.C.: Intelligent sensing systems for measuring wellness indices of the daily activities for the elderly. In: 2012 8th International Conference on Intelligent Environments (IE), pp. 347–350. IEEE (2012)

    Google Scholar 

  117. Suryadevara, N.K., Mukhopadhyay, S.C., Rayudu, R.K., Huang, Y.M.: Sensor data fusion to determine wellness of an elderly in intelligent home monitoring environment. In: 2012 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), pp. 947–952. IEEE (2012)

    Google Scholar 

  118. Quazi, M.T., Mukhopadhyay, S.C., Suryadevara, N.K., Huang, Y.M.: Towards the smart sensors based human emotion recognition. In: 2012 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), pp. 2365–2370. IEEE (2012)

    Google Scholar 

  119. Devlin, B.S., Mukhopadhyay, S.C., Sen Gupta, G.: Remote Medical Monitoring Unit. In: Proceedings of ENZCon Conference, Christchurch, New Zealand, November 13-14, pp. 110–115 (2006) ISBN-13: 978-0-473-11779-5, ISBN-10:0-473-11779-7

    Google Scholar 

  120. Kim, T., Lee, H., Chung, Y.: Advanced universal remote controller for home automation and security. IEEE Transactions on Consumer Electronics 56(4), 2537–2542 (2010)

    Article  Google Scholar 

  121. Lubecke, V.M., Boric-Lubecke, O., Host-Madsen, A., Fathy, A.E.: Through-the-wall radar life detection and monitoring. In: IEEE/MTT-S International Microwave Symposium, pp. 769–772. IEEE (2007)

    Google Scholar 

  122. Berezdivin, R., Breinig, R., Topp, R.: Next-generation wireless communications concepts and technologies. IEEE Communications Magazine 40(3), 108–116 (2002)

    Article  Google Scholar 

  123. Yu, S.-N., Cheng, J.-C.: A wireless physiological signal monitoring system with integrated bluetooth and WiFi technologies. In: 27th Annual International Conference of the Engineering in Medicine and Biology Society, IEEE-EMBS 2005, pp. 2203–2206. IEEE (2006)

    Google Scholar 

  124. Radu, V., Kriara, L., Marina, M.K.: Pazl: A mobile crowdsensing based indoor WiFi monitoring system. In: CNSM, pp. 75–83 (2013)

    Google Scholar 

  125. Qu, H., Cheng, J., Cheng, Q., Wang, L.Y.: WiFi-based telemedicine system: signal accuracy and security. In: International Conference on Computational Science and Engineering, CSE 2009, vol. 2, pp. 1081–1085. IEEE (2009)

    Google Scholar 

  126. http://www.gammawatch.com/images/Bluetooth-Detector-Concept-Diagram.jpeg

  127. http://www.libelium.com/vehicle_traffic_monitoring_bluetooth_sensors_over_zigbee/#prettyPhoto-img9052/0/

  128. Haartsen, J.: Bluetooth-The universal radio interface for ad hoc, wireless connectivity. Ericsson Review 3(1), 110–117 (1998)

    Google Scholar 

  129. Song, J.-H., Lee, N.-S., Yoon, S.-W., Kwon, S.-W., Chin, S., Kim, Y.-S.: Material tracker for construction logistics. In: Proceedings of the ISARC 2007, Kochi, Kerala, India, pp. 63–67 (2007)

    Google Scholar 

  130. Lee, H.J., Lee, S.H., Ha, K.-S., Jang, H.C., Chung, W.-Y., Kim, J.Y., Chang, Y.-S., Yoo, D.H.: Ubiquitous healthcare service using Zigbee and mobile phone for elderly patients. International Journal of Medical Informatics 78(3), 193–198 (2009)

    Article  Google Scholar 

  131. Frehill, P., Chambers, D., Rotariu, C.: Using Zigbee to integrate medical devices. In: 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS 2007, pp. 6717–6720. IEEE (2007)

    Google Scholar 

  132. Baker, N.: ZigBee and Bluetooth: Strengths and weaknesses for industrial applications. Computing and Control Engineering 16(2), 20–25 (2005)

    Article  Google Scholar 

  133. Valente, A., Morais, R., Serôdio, C., Mestre, P., Pinto, S., Cabral, M.: A zigbee sensor element for distributed monitoring of soil parameters in environmental monitoring. In: 2007 IEEE Sensors, pp. 135–138. IEEE (2007)

    Google Scholar 

  134. Zhang, Q., Yang, X.-L., Zhou, Y.-M., Wang, L.-R., Guo, X.-S.: A wireless solution for greenhouse monitoring and control system based on ZigBee technology. Journal of Zhejiang University Science A 8(10), 1584–1587 (2007)

    Article  Google Scholar 

  135. Lahtela, A., Hassinen, M., Jylha, V.: RFID and NFC in healthcare: Safety of hospitals medication care. In: Second International Conference on Pervasive Computing Technologies for Healthcare, PervasiveHealth 2008, pp. 241–244. IEEE (2008)

    Google Scholar 

  136. Korostelev, M., Bai, L., Wu, J., Tan, C.C., Mastrogiannis, D.: Body sensor networks in fetal monitoring with NFC enabled Android devices. In: Proceedings of the 7th International Conference on Body Area Networks, pp. 9–12. ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering) (2012)

    Google Scholar 

  137. Haselsteiner, E., Breitfuß, K.: Security in near field communication (NFC). In: Workshop on RFID Security, pp. 12–14 (2006)

    Google Scholar 

  138. Morak, J., Kumpusch, H., Hayn, D., Modre-Osprian, R., Schreier, G.: Design and evaluation of a telemonitoring concept based on NFC-enabled mobile phones and sensor devices. IEEE Transactions on Information Technology in Biomedicine 16(1), 17–23 (2012)

    Article  Google Scholar 

  139. Miranda, S., Pastorelly, N.: NFC mobiquitous information service prototyping at the University of Nice Sophia Antipolis and multi-mode NFC application proposal. In: 2011 3rd International Workshop on Near Field Communication (NFC), pp. 3–8. IEEE (2011)

    Google Scholar 

  140. Timalsina, S.K., Bhusal, R., Moh, S.: NFC and its application to mobile payment: Overview and comparison. In: 2012 8th International Conference on Information Science and Digital Content Technology (ICIDT), vol. 1, pp. 203–206. IEEE (2012)

    Google Scholar 

  141. Opperman, C.A., Hancke, G.P.: A generic NFC-enabled measurement system for remote monitoring and control of client-side equipment. In: 2011 3rd International Workshop on Near Field Communication (NFC), pp. 44–49. IEEE (2011)

    Google Scholar 

  142. Yamashita, K., Izumi, S., Nakano, M., Fujii, T., Konishi, T., Kawaguchi, H., Kimura, H., et al.: A 38 μA wearable biosignal monitoring system with near field communication. In: 2013 IEEE 11th International New Circuits and Systems Conference (NEWCAS), pp. 1–4. IEEE (2013)

    Google Scholar 

  143. Aziza, H.: NFC Technology in mobile phone next-generation services. In: 2010 Second International Workshop on Near Field Communication (NFC), pp. 21–26. IEEE (2010)

    Google Scholar 

  144. Kim, I., Lai, P.-H., Lobo, R., Gluckman, B.J.: Challenges in wearable personal health monitoring systems. In: 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), August 26-30, pp. 5264–5267 (2014), doi:10.1109/EMBC.2014.6944813

    Google Scholar 

  145. McAdams, E., Krupaviciute, A., Gehin, C., Grenier, E., Massot, B., Dittmar, A., Rubel, P., Fayn, J.: Wearable sensor systems: the challenges. In: Conf. Proc. IEEE Eng. Med. Biol. Soc. 2011, pp. 3648–3651 (2011), doi:10.1109/IEMBS.2011.6090614

    Google Scholar 

  146. McAdams, E., Gehin, C., Massot, B., McLaughlin, J.: The challenges facing wearable sensor systems. Stud. Health Technol. Inform. 177, 196–202 (2012)

    Google Scholar 

  147. Fletcher, R.R., Poh, M.Z., Eydgahi, H.: Wearable sensors: opportunities and challenges for low-cost health care. In: Conf. Proc. IEEE Eng. Med. Biol. Soc. 2010, pp. 1763–1766 (2010), doi:10.1109/IEMBS.2010.5626734

    Google Scholar 

  148. http://electroiq.com/blog/2013/04/health-awareness-spurs-quadrupling-in-mems-sensor-market-for-wea/

  149. http://www.fitbit.com/nz/about#i.1x3oxveo9hfqu1

  150. https://www.google.com/glass/start/

  151. http://www.technologyreview.com/featuredstory/532691/google-glass-is-dead-long-live-smart-glasses/

  152. http://techcrunch.com/2015/03/04/google-glass-is-alive-and-well-and-living-in-the-enterprise/

  153. http://www.tomsguide.com/us/best-smartwatches,review-2156.html

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Nag, A., Mukhopadhyay, S.C. (2015). Wearable Electronics Sensors: Current Status and Future Opportunities. In: Mukhopadhyay, S. (eds) Wearable Electronics Sensors. Smart Sensors, Measurement and Instrumentation, vol 15. Springer, Cham. https://doi.org/10.1007/978-3-319-18191-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18191-2_1

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18190-5

  • Online ISBN: 978-3-319-18191-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics