Skip to main content

Sharing Non-anonymous Costs of Multiple Resources Optimally

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 9079)

Abstract

In cost sharing games, the existence and efficiency of pure Nash equilibria fundamentally depends on the method that is used to share the resources’ costs. We consider a general class of resource allocation problems in which a set of resources is used by a heterogeneous set of selfish users. The cost of a resource is a (non-decreasing) function of the set of its users. Under the assumption that the costs of the resources are shared by uniform cost sharing protocols, i.e., protocols that use only local information of the resource’s cost structure and its users to determine the cost shares, we exactly quantify the inefficiency of the resulting pure Nash equilibria. Specifically, we show tight bounds on prices of stability and anarchy for games with only submodular and only supermodular cost functions, respectively, and an asymptotically tight bound for games with arbitrary set-functions. While all our upper bounds are attained for the well-known Shapley cost sharing protocol, our lower bounds hold for arbitrary uniform cost sharing protocols and are even valid for games with anonymous costs, i.e., games in which the cost of each resource only depends on the cardinality of the set of its users.

Keywords

  • Cost Function
  • Cost Sharing
  • Resource Allocation Problem
  • Congestion Game
  • Potential Game

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Most of the work was done while this author was at Technische Universität Berlin.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-18173-8_20
  • Chapter length: 14 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   59.99
Price excludes VAT (USA)
  • ISBN: 978-3-319-18173-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   79.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anshelevich, E., Dasgupta, A., Kleinberg, J., Tardos, É., Wexler, T., Roughgarden, T.: The price of stability for network design with fair cost allocation. SIAM J. Comput. 38(4), 1602–1623 (2008)

    CrossRef  MATH  MathSciNet  Google Scholar 

  2. Chen, H.-L., Roughgarden, T., Valiant, G.: Designing network protocols for good equilibria. SIAM J. Comput. 39(5), 1799–1832 (2010)

    CrossRef  MATH  MathSciNet  Google Scholar 

  3. Fabrikant, A., Papadimitriou, C.H., Talwar, K.: The complexity of pure nash equilibria. In: Babai, L., (ed.) Proc. 36th Annual ACM Sympos. Theory Comput., pp. 604–612 (2004)

    Google Scholar 

  4. Fotakis, D., Kontogiannis, S., Spirakis, P.G.: Selfish unsplittable flows. Theoret. Comput. Sci. 348(2–3), 226–239 (2005)

    CrossRef  MATH  MathSciNet  Google Scholar 

  5. Gkatzelis, V., Kollias, K., Roughgarden, T.: Optimal cost-sharing in weighted congestion games. In: Liu, T.-Y., Qi, Q., Ye, Y. (eds.) WINE 2014. LNCS, vol. 8877, pp. 72–88. Springer, Heidelberg (2014)

    CrossRef  Google Scholar 

  6. Goemans, M.X., Mirrokni, V.S., Vetta, A.: Sink equilibria and convergence. In: Proc. 46th Annual IEEE Sympos. Foundations Comput. Sci, pp. 142–154 (2005)

    Google Scholar 

  7. Gopalakrishnan, R., Marden, J.R., Wierman, A.: Potential games are necessary to ensure pure nash equilibria in cost sharing games. In: Proc. 14th ACM Conf. Electronic Commerce, pp. 563–564 (2013)

    Google Scholar 

  8. Hart, S., Mas-Colell, A.: Potential, value, and consistency. Econometrica 57(3), 589–614 (1989)

    CrossRef  MATH  MathSciNet  Google Scholar 

  9. Kalai, E., Samet, D.: On weighted shapley values. Internat. J. Game Theory 16(3), 205–222 (1987)

    CrossRef  MATH  MathSciNet  Google Scholar 

  10. Klimm, M., Schmand, D.: Sharing non-anonymous costs of multiple resources optimally (2014). arXiv preprint arXiv:1412.4456

  11. Kollias, K., Roughgarden, T.: Restoring pure equilibria to weighted congestion games. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011, Part II. LNCS, vol. 6756, pp. 539–551. Springer, Heidelberg (2011)

    CrossRef  Google Scholar 

  12. Koutsoupias, E., Papadimitriou, C.H.: Worst-case equilibria. In: Meinel, C., Tison, S. (eds.) STACS 1999. LNCS, vol. 1563, pp. 404–413. Springer, Heidelberg (1999)

    CrossRef  Google Scholar 

  13. Libman, L., Orda, A.: Atomic resource sharing in noncooperative networks. Telecommun. Syst. 17(4), 385–409 (2001)

    CrossRef  MATH  Google Scholar 

  14. Milchtaich, I.: Congestion games with player-specific payoff functions. Games Econom. Behav. 13(1), 111–124 (1996)

    CrossRef  MATH  MathSciNet  Google Scholar 

  15. Papadimitriou, C.H.: Alogithms, games, and the Internet. In: Proc. 33th Annual ACM Sympos. Theory Comput., pp. 749–753 (2001)

    Google Scholar 

  16. Rosenthal, R.W.: A class of games possessing pure-strategy Nash equilibria. Internat. J. Game Theory 2(1), 65–67 (1973)

    CrossRef  MATH  MathSciNet  Google Scholar 

  17. Roughgarden, T., Schrijvers, O.: Network cost-sharing without anonymity. In: Lavi, R. (ed.) SAGT 2014. LNCS, vol. 8768, pp. 134–145. Springer, Heidelberg (2014)

    CrossRef  Google Scholar 

  18. Schulz, A.S., Stier-Moses, N.E.: On the performance of user equilibria in traffic networks. In: Proc. 14th Annual ACM-SIAM Sympos. on Discrete Algorithms, pp. 86–87. Society for Industrial and Applied Mathematics (2003)

    Google Scholar 

  19. Shapley, L.S.: A value for \(n\)-person games. In: Kuhn, H.W., Tucker, A.W. (ed.) Contributions to the Theory of Games, vol. 2, pp. 307–317. Princeton University Press (1953)

    Google Scholar 

  20. von Falkenhausen, P., Harks, T.: Optimal cost sharing for resource selection games. Math. Oper. Res. 38(1), 184–208 (2013)

    CrossRef  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Schmand .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Klimm, M., Schmand, D. (2015). Sharing Non-anonymous Costs of Multiple Resources Optimally. In: Paschos, V., Widmayer, P. (eds) Algorithms and Complexity. CIAC 2015. Lecture Notes in Computer Science(), vol 9079. Springer, Cham. https://doi.org/10.1007/978-3-319-18173-8_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18173-8_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18172-1

  • Online ISBN: 978-3-319-18173-8

  • eBook Packages: Computer ScienceComputer Science (R0)