CIAC 2015: Algorithms and Complexity pp 167-181

# Clique-Width of Graph Classes Defined by Two Forbidden Induced Subgraphs

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9079)

## Abstract

If a graph has no induced subgraph isomorphic to any graph in a finite family $$\{H_1,\ldots ,H_p\}$$, it is said to be $$(H_1,\ldots ,H_p)$$-free. The class of $$H$$-free graphs has bounded clique-width if and only if $$H$$ is an induced subgraph of the 4-vertex path $$P_4$$. We study the (un)boundedness of the clique-width of graph classes defined by two forbidden induced subgraphs $$H_1$$ and $$H_2$$. Prior to our study it was not known whether the number of open cases was finite. We provide a positive answer to this question. To reduce the number of open cases we determine new graph classes of bounded clique-width and new graph classes of unbounded clique-width. For obtaining the latter results we first present a new, generic construction for graph classes of unbounded clique-width. Our results settle the boundedness or unboundedness of the clique-width of the class of $$(H_1,H_2)$$-free graphs
1. (i)

for all pairs $$(H_1,H_2)$$, both of which are connected, except two non-equivalent cases, and

2. (ii)

for all pairs $$(H_1,H_2)$$, at least one of which is not connected, except 11 non-equivalent cases.

We also consider classes characterized by forbidding a finite family of graphs $$\{H_1,\ldots ,H_p\}$$ as subgraphs, minors and topological minors, respectively, and completely determine which of these classes have bounded clique-width. Finally, we show algorithmic consequences of our results for the graph colouring problem restricted to $$(H_1,H_2)$$-free graphs.

### Keywords

Clique-width Forbidden induced subgraph Graph class

## Preview

### References

1. 1.
Boliac, R., Lozin, V.V.: On the Clique-Width of Graphs in Hereditary Classes. In: Bose, P., Morin, P. (eds.) ISAAC 2002. LNCS, vol. 2518, pp. 44–54. Springer, Heidelberg (2002)
2. 2.
Bonomo, F., Grippo, L.N., Milanič, M., Safe, M.D.: Graphs of power-bounded clique-width. arXiv, abs/1402.2135 (2014)Google Scholar
3. 3.
Brandstädt, A., Dabrowski, K.K., Huang, S., Paulusma, D.: Bounding the clique-width of $$H$$-free chordal graphs. CoRR, abs/1502.06948 (2015)Google Scholar
4. 4.
Brandstädt, A., Engelfriet, J., Le, H.-O., Lozin, V.V.: Clique-width for 4-vertex forbidden subgraphs. Theory of Computing Systems 39(4), 561–590 (2006)
5. 5.
Brandstädt, A., Klembt, T., Mahfud, S.: $$P_6$$- and triangle-free graphs revisited: structure and bounded clique-width. Discrete Mathematics and Theoretical Computer Science 8(1), 173–188 (2006)
6. 6.
Brandstädt, A., Kratsch, D.: On the structure of ($$P_5$$, gem)-free graphs. Discrete Applied Mathematics 145(2), 155–166 (2005)
7. 7.
Brandstädt, A., Le, H.-O., Mosca, R.: Gem- and co-gem-free graphs have bounded clique-width. International Journal of Foundations of Computer Science 15(1), 163–185 (2004)
8. 8.
Brandstädt, A., Le, H.-O., Mosca, R.: Chordal co-gem-free and ($$P_5$$, gem)-free graphs have bounded clique-width. Discrete Applied Mathematics 145(2), 232–241 (2005)
9. 9.
Brandstädt, A., Mahfud, S.: Maximum weight stable set on graphs without claw and co-claw (and similar graph classes) can be solved in linear time. Information Processing Letters 84(5), 251–259 (2002)
10. 10.
Brandstädt, A., Mosca, R.: On variations of $$P_4$$-sparse graphs. Discrete Applied Mathematics 129(2–3), 521–532 (2003)
11. 11.
Broersma, H., Golovach, P.A., Paulusma, D., Song, J.: Determining the chromatic number of triangle-free $$2P_3$$-free graphs in polynomial time. Theoretical Computer Science 423, 1–10 (2012)
12. 12.
Broersma, H., Golovach, P.A., Paulusma, D., Song, J.: Updating the complexity status of coloring graphs without a fixed induced linear forest. Theoretical Computer Science 414(1), 9–19 (2012)
13. 13.
Courcelle, B., Makowsky, J.A., Rotics, U.: Linear time solvable optimization problems on graphs of bounded clique-width. Theory of Computing Systems 33(2), 125–150 (2000)
14. 14.
Dabrowski, K.K., Golovach, P.A., Paulusma, D.: Colouring of graphs with Ramsey-type forbidden subgraphs. Theoretical Computer Science 522, 34–43 (2014)
15. 15.
Dabrowski, K.K., Huang, S., Paulusma, D.: Bounding Clique-Width via Perfect Graphs. In: Dediu, A.-H., Formenti, E., Martín-Vide, C., Truthe, B. (eds.) LATA 2015. LNCS, vol. 8977, pp. 676–688. Springer, Heidelberg (2015). Full version: arXiv CoRR abs/1406.6298
16. 16.
Dabrowski, K.K., Lozin, V.V., Raman, R., Ries, B.: Colouring vertices of triangle-free graphs without forests. Discrete Mathematics 312(7), 1372–1385 (2012)
17. 17.
Dabrowski, K.K., Paulusma, D.: Classifying the Clique-Width of H-Free Bipartite Graphs. In: Cai, Z., Zelikovsky, A., Bourgeois, A. (eds.) COCOON 2014. LNCS, vol. 8591, pp. 489–500. Springer, Heidelberg (2014)
18. 18.
de Ridder, H.N., et al. Information System on Graph Classes and their Inclusions, 2001–2013. http://www.graphclasses.org
19. 19.
Espelage, W., Gurski, F., Wanke, E.: How to Solve NP-hard Graph Problems on Clique-Width Bounded Graphs in Polynomial Time. In: Brandstädt, A., Le, V.B. (eds.) WG 2001. LNCS, vol. 2204, pp. 117–128. Springer, Heidelberg (2001)
20. 20.
Fellows, M.R., Rosamond, F.A., Rotics, U., Szeider, S.: Clique-width is NP-Complete. SIAM Journal on Discrete Mathematics 23(2), 909–939 (2009)
21. 21.
Golovach, P.A., Johnson, M., Paulusma, D., Song, J.: A survey on the computational complexity of colouring graphs with forbidden subgraphs. CoRR, abs/1407.1482 (2014)Google Scholar
22. 22.
Golovach, P.A., Paulusma, D.: List coloring in the absence of two subgraphs. Discrete Applied Mathematics 166, 123–130 (2014)
23. 23.
Golumbic, M.C., Rotics, U.: On the clique-width of some perfect graph classes. International Journal of Foundations of Computer Science 11(03), 423–443 (2000)
24. 24.
Gurski, F.: Graph operations on clique-width bounded graphs. CoRR, abs/cs/0701185 (2007)Google Scholar
25. 25.
Hoàng, C.T., Lazzarato, D.A.: Polynomial-time algorithms for minimum weighted colorings of $$(P_5,\overline{P_5})$$-free graphs and related graph classes. Discrete Applied Mathematics 186(0166–218X), 106–111 (2015). doi:http://dx.doi.org/10.1016/j.dam.2015.01.022. http://www.sciencedirect.com/science/article/pii/S0166218X15000244
26. 26.
Huang, S., Johnson, M., Paulusma, D.: Narrowing the complexity gap for colouring $$({C}_s,{P}_t)$$-free graphs. In: Gu, Q., Hell, P., Yang, B. (eds.) AAIM 2014. LNCS, vol. 8546, pp. 162–173. Springer, Heidelberg (2014)
27. 27.
Kamiński, M., Lozin, V.V., Milanič, M.: Recent developments on graphs of bounded clique-width. Discrete Applied Mathematics 157(12), 2747–2761 (2009)
28. 28.
Kobler, D., Rotics, U.: Edge dominating set and colorings on graphs with fixed clique-width. Discrete Applied Mathematics 126(2–3), 197–221 (2003)
29. 29.
Král’, D., Kratochvíl, J., Tuza, Z., Woeginger, G.J.: Complexity of Coloring Graphs without Forbidden Induced Subgraphs. In: Brandstädt, A., Le, V.B. (eds.) WG 2001. LNCS, vol. 2204, pp. 254–262. Springer, Heidelberg (2001)
30. 30.
Kratsch, S., Schweitzer, P.: Graph Isomorphism for Graph Classes Characterized by Two Forbidden Induced Subgraphs. In: Golumbic, M.C., Stern, M., Levy, A., Morgenstern, G. (eds.) WG 2012. LNCS, vol. 7551, pp. 34–45. Springer, Heidelberg (2012)
31. 31.
Lozin, V.V., Rautenbach, D.: On the band-, tree-, and clique-width of graphs with bounded vertex degree. SIAM Journal on Discrete Mathematics 18(1), 195–206 (2004)
32. 32.
Lozin, V.V., Rautenbach, D.: The tree- and clique-width of bipartite graphs in special classes. Australasian Journal of Combinatorics 34, 57–67 (2006)
33. 33.
Lozin, V.V., Volz, J.: The clique-width of bipartite graphs in monogenic classes. International Journal of Foundations of Computer Science 19(02), 477–494 (2008)
34. 34.
Makowsky, J.A., Rotics, U.: On the clique-width of graphs with few $$P_4$$’s. International Journal of Foundations of Computer Science 10(03), 329–348 (1999)
35. 35.
Malyshev, D.S.: The coloring problem for classes with two small obstructions. Optimization Letters 8(8), 2261–2270 (2014)
36. 36.
Malyshev, D.S.: Two cases of polynomial-time solvability for the coloring problem. Journal of Combinatorial Optimization (in press)Google Scholar
37. 37.
Olariu, S.: Paw-free graphs. Information Processing Letters 28(1), 53–54 (1988)
38. 38.
Oum, S.-I.: Approximating rank-width and clique-width quickly. ACM Transactions on Algorithms 5(1), 10 (2008)
39. 39.
Oum, S.-I., Seymour, P.D.: Approximating clique-width and branch-width. Journal of Combinatorial Theory, Series B 96(4), 514–528 (2006)
40. 40.
Ramsey, F.P.: On a problem of formal logic. Proceedings of the London Mathematical Society s2–30(1), 264–286 (1930)Google Scholar
41. 41.
Randerath, B.: 3-colorability and forbidden subgraphs. I: Characterizing pairs. Discrete Mathematics 276(1–3), 313–325 (2004)
42. 42.
Randerath, B., Schiermeyer, I.: A note on Brooks’ theorem for triangle-free graphs. Australasian Journal of Combinatorics 26, 3–9 (2002)
43. 43.
Rao, M.: MSOL partitioning problems on graphs of bounded treewidth and clique-width. Theoretical Computer Science 377(1–3), 260–267 (2007)
44. 44.
Schindl, D.: Some new hereditary classes where graph coloring remains NP-hard. Discrete Mathematics 295(1–3), 197–202 (2005)
45. 45.
Schweitzer, P.: Towards an isomorphism dichotomy for hereditary graph classes. In: Mayr, E.W., Ollinger, N. (eds.) 32nd International Symposium on Theoretical Aspects of Computer Science (STACS 2015). LIPIcs, vol. 30, pp. 689–702. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Dagstuhl (2015). doi:http://dx.doi.org/10.4230/LIPIcs.STACS.2015.689. http://drops.dagstuhl.de/opua/volltexte/2015/4951
46. 46.
Stein, W.A., et al.: Sage Mathematics Software (Version 5.9). The Sage Development Team (2013). http://www.sagemath.org