A Numerical Implementation of an Interior Point Methods for Linear Programming Based on a New Kernel Function

Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 359)

Abstract

In this paper, we define a new barrier function and propose a new primal-dual interior point methods based on this function for linear optimization. The proposed kernel function which yields a low algorithm complexity bound for both large and small-update interior point methods. This purpose is confirmed by numerical experiments showing the efficiency of our algorithm which are presented in the last of this paper.

Keywords

Linear Optimization Kernel function Interior Point methods Complexity Bound 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Andersen, E.D., Gondzio, J., Meszaros, C., Xu, X.: Implementation of interior point methods for large scale linear programming. In: Terlaky, T. (ed.) Interior Point Methods of Mathematical Programming, pp. 189–252. Kluwer Academic Publisher, The Netherlands (1996)CrossRefGoogle Scholar
  2. 2.
    Bai, Y.Q., El Ghami, M., Roos, C.: A new efficient large-update primal-dual interior point method based on a finite barrier. SIAM Journal on Optimization 13, 766–782 (2003)CrossRefMATHGoogle Scholar
  3. 3.
    Bai, Y.Q., El Ghami, M., Roos, C.: A comparative study of kernel functions for primal-dual interior point algorithms in linear optimization. SIAM Journal on Optimization 15, 101–128 (2004)CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    Bai, Y.Q., Roos, C.: A primal-dual interior point method based on a new kernel function with linear growth rate. In: Proceedings of the 9th Australian Optimization Day, Perth, Australia (2002)Google Scholar
  5. 5.
    Bai, Y.Q., Roos, C.: A polynomial-time algorithm for linear optimization based on a new simple kernel function. Optimization Methods and Software 18, 631–646 (2003)CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Bai, Y.Q., Guo, J., Roos, C.: A new kernel function yielding the best known iteration bounds for primal-dual interior point algorithms. Acta Mathematica Sinica 49, 259–270 (2007)Google Scholar
  7. 7.
    Cho, G.M.: An interior point algorithm for linear optimization based on a new barrier function. Applied Mathematics and Computation 218, 386–395 (2011)CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    El Ghami, M., Guennoun, Z.A., Bouali, S., Steihaug, T.: Interior point methods for linear optimization based on a kernel function with a trigonometric barrier term. Journal of Computational and Applied Mathematics 236, 3613–3623 (2012)CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    El Ghami, M., Ivanov, I., Melissen, J.B.M., Roos, C., Steihaug, T.: A polynomial-time algorithm for linear optimization based on a new class of kernel functions. Journal of Computational and applied Mathematics 224, 500–513 (2009)CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    El Ghami, M., Roos, C.: Generic primal-dual interior point methods based on a new kernel function. RAIRO-Operations Research 42, 199–213 (2008)CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    Gonzaga, C.C.: Path following methods for linear programming. SIAM Review 34, 167–227 (1992)CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    den Hertog, D.: Interior point approach to linear, quadratic and convex programming. Mathematical Application, vol. 277. Kluwer Academic Publishers, Dordrecht (1994)CrossRefMATHGoogle Scholar
  13. 13.
    Karmarkar, N.K.: A new polynomial-time algorithm for linear programming. In: Proceedings of the 16th Annual ACM Symposium on Theory of Computing, vol. 4, pp. 373–395 (1984)Google Scholar
  14. 14.
    Peng, J., Roos, C., Terlaky, T.: Self-regular functions and new search directions for linear and semidefinite optimization. Mathematical Programming 93, 129–171 (2002)CrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    Peng, J., Roos, C., Terlaky, T.: Self-Regularity: A New Paradigm for Primal-Dual interior point Algorithms. Princeton University Press, Princeton (2002)Google Scholar
  16. 16.
    Roos, C., Terlaky, T., Vial, J.P.: Theory and algorithms for linear optimization. In: An Interior Point Approach. John Wiley & Sons, Chichester (1997)Google Scholar
  17. 17.
    Ye, Y.: Interior point algorithms. Theory and Analysis. John-Wiley & Sons, Chichester (1997)CrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Mousaab Bouafia
    • 1
  • Djamel Benterki
    • 2
  • Adnan Yassine
    • 3
  1. 1.LabCAV, Laboratoire de Contrôle AvancéUniversité de GuelmaGuelmaAlgérie
  2. 2.LMFN, Laboratoire de Mathématiques Fondamentales et NumériquesSétif-1Algérie
  3. 3.LMAH, Laboratoire de Mathématiques Appliquées du HavreUniversité du HavreLe HavreFrance

Personalised recommendations