Skip to main content

Dynamic Adaptive Large Neighborhood Search for Inventory Routing Problem

  • Conference paper

Part of the Advances in Intelligent Systems and Computing book series (AISC,volume 359)

Abstract

This paper is devoted to new approach to increase level of time consistency of heuristics and propose Dynamic Adaptive Large Neighborhood Search (DALNS) algorithm to improve solutions generated by ALNS.

To evaluate effectiveness of DALNS implementation computational experiments were performed on benchmark instances. It was shown that the number of tests in which solution was improved equals 5236 (46% of total amount).

Keywords

  • time consistency
  • inventory routing problem (IRP)
  • heuristic algorithms
  • adaptive large neighborhood search (ALNS)
  • dynamic adaptive large neighborhood search (DALNS)

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-18161-5_20
  • Chapter length: 11 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   169.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-18161-5
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   219.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Assad, A., Golden, B., Dahl, R., Dror, M.: Design of an inventory routing system for a large propane-distribution firm. In: Gooding, C. (ed.) Proceedings of the 1982 Southeast TIMS Conference, pp. 315–320 (1982)

    Google Scholar 

  2. Dror, M., Ball, M., Golden, B.: A computational comparison of algorithms for the inventory routing problem. Annals of Operations Research 4(1), 1–23 (1985)

    CrossRef  MathSciNet  Google Scholar 

  3. Bell, W.J., Dalberto, L.M., Fisher, M.L., Greenfield, A.J., Jaikumar, R., Kedia, P., Mack, R.G., Prutzman, P.J.: Improving the distribution of industrial gases with an on-line computerized routing and scheduling optimizer. Interfaces 13(6), 4–23 (1983)

    CrossRef  Google Scholar 

  4. Blumenfeld, D.E., Burns, L.D., Diltz, J.D., Daganzo, C.F.: Analyzing trade-offs between transportation, inventory and production costs on freight networks. Transportation Research Part B: Methodological 19(5), 361–380 (1985)

    CrossRef  MathSciNet  Google Scholar 

  5. Blumenfeld, D.E., Burns, L.D., Daganzo, C.F., Frick, M.C., Hall, R.W.: Reducing logistics costs at General Motors. Interfaces 17(1), 26–47 (1987)

    CrossRef  Google Scholar 

  6. Bertazzi, L., Paletta, G., Speranza, M.G.: Deterministic order-up-to level policies in an inventory routing problem. Transportation Science 36(1), 119–132 (2002)

    CrossRef  MATH  Google Scholar 

  7. Archetti, C., Bertazzi, L., Laporte, G., Speranza, M.G.: A branch-and-cut algorithm for a vendor-managed inventory-routing problem. Transportation Science 41(3), 382–391 (2007)

    CrossRef  Google Scholar 

  8. Coelho, L.C., Laporte, G.: The exact solution of several classes of inventory-routing problems. Computers and Operations Research 40(2), 558–565 (2013)

    CrossRef  MathSciNet  Google Scholar 

  9. Coelho, L.C., Laporte, G.: A branch-and-cut algorithm for the multi-product multi-vehicle inventory-routing problem. International Journal of Production Research 51(23-24), 7156–7169 (2013)

    CrossRef  Google Scholar 

  10. Ronen, D.: Marine inventory routing: Shipments planning. Journal of the Operational Research Society 53(1), 108–114 (2002)

    CrossRef  MATH  Google Scholar 

  11. Coelho, L.C., Cordeau, J.-F., Laporte, G.: Heuristics for dynamic and stochastic inventory-routing. Computers and Operations Research 52(Part A), 55–67 (2014)

    CrossRef  MathSciNet  Google Scholar 

  12. Bertazzi, L., Bosco, A., Guerriero, F., Laganà, D.: A stochastic inventory routing problem with stock-out. Transportation Research Part C: Emerging Technologies 27, 89–107 (2013)

    CrossRef  Google Scholar 

  13. Cáceres-Cruz, J., Juan, A.A., Bektas, T., Grasman, S.E., Faulin, J.: Combining Monte Carlo simulation with heuristics for solving the inventory routing problem with stochastic demands. In: Laroque, C., Himmelspach, J., Pasupathy, R., Rose, O., Uhrmacher, A. (eds.) Proceedings of the 2012 Winter Simulation Conference, pp. 274–274. IEEE Press, Piscataway (2012)

    Google Scholar 

  14. Geiger, M.J., Sevaux, M.: The biobjective inventory routing problem – problem solution and decision support. In: Pahl, J., Reiners, T., Voß, S. (eds.) INOC 2011. LNCS, vol. 6701, pp. 365–378. Springer, Heidelberg (2011)

    CrossRef  Google Scholar 

  15. Coelho, L.C., Cordeau, J.F., Laporte, G.: The inventory-routing problem with transshipment. Computers and Operations Research 39(11), 2537–2548 (2012)

    CrossRef  MATH  MathSciNet  Google Scholar 

  16. Papageorgiou, D.J., Nemhauser, G.L., Sokol, J., Cheon, M.S., Keha, A.B.: MIRPLib–A library of maritime inventory routing problem instances: Survey, core model, and benchmark results. European Journal of Operational Research 235(2), 350–366 (2014)

    CrossRef  MATH  MathSciNet  Google Scholar 

  17. Archetti, C., Bertazzi, L., Hertz, A., Speranza, M.G.: A hybrid heuristic for an inventory routing problem. INFORMS Journal on Computing 24(1), 101–116 (2012)

    CrossRef  MathSciNet  Google Scholar 

  18. Moin, N.H., Salhi, S., Aziz, N.A.B.: An efficient hybrid genetic algorithm for the multi-product multi-period inventory routing problem. International Journal of Production Economics 133(1), 334–343 (2011)

    CrossRef  Google Scholar 

  19. Marinakis, Y., Marinaki, M.: A particle swarm optimization algorithm with path relinking for the location routing problem. Journal of Mathematical Modelling and Algorithms 7(1), 59–78 (2008)

    CrossRef  MATH  MathSciNet  Google Scholar 

  20. Bellman, R.: Dynamic Programming. Princeton University Press, Princeton (1957)

    MATH  Google Scholar 

  21. Zakharov, V.V., Schegryaev, A.N.: Multi-period cooperative vehicle routing games. Contributions to Game Theory and Management 7, 349–359 (2014)

    Google Scholar 

  22. Desaulniers, G., Rakke, J.G., Coelho, L.C.: A branch-price-and-cut algorithm for the inventory-routing problem (2015), http://www.leandro-coelho.com/publications/

  23. Coelho, L.C., Laporte, G.: Improved solutions for inventory-routing problems through valid inequalities and input ordering. International Journal of Production Economics 155(1), 391–397 (2014)

    CrossRef  Google Scholar 

  24. Agra, A., Christiansen, M., Delgado, A., Simonetti, L.: Hybrid heuristics for a short sea inventory routing problem. European Journal of Operational Research 236(3), 924–935 (2014)

    CrossRef  MATH  MathSciNet  Google Scholar 

  25. Van Anholt, R.G., Coelho, L.C., Laporte, G., Vis, I.F.A.: An Inventory-Routing Problem with Pickups and Deliveries Arising in the Replenishment of Automated Teller Machines (2015), http://www.leandro-coelho.com/publications/

  26. Brinkmann, J., Ulmer, M.W., Mattfeld, D.C.: Inventory Routing for Bike Sharing Systems (2015), https://www.tu-braunschweig.de/winfo/team/brinkmann

  27. Aksen, D., Kaya, O., Salman, F.S., Tüncel, Ö.: An adaptive large neighborhood search algorithm for a selective and periodic inventory routing problem. European Journal of Operational Research 239(2), 413–426 (2014)

    CrossRef  MathSciNet  Google Scholar 

  28. Vansteenwegen, P., Mateo, M.: An iterated local search algorithm for the single-vehicle cyclic inventory routing problem. European Journal of Operational Research 237(3), 802–813 (2014)

    CrossRef  Google Scholar 

  29. Raa, B.: Fleet optimization for cyclic inventory routing problems. International Journal of Production Economics 160, 172–181 (2015)

    CrossRef  Google Scholar 

  30. Bertazzi, L., Bosco, A., Laganà, D.: Managing stochastic demand in an Inventory Routing Problem with transportation procurement. Omega (October 16, 2014), http://dx.doi.org/10.1016/j.omega.2014.09.010

  31. Cordeau, J.F., Laganà, D., Musmanno, R., Vocaturo, F.: A decomposition-based heuristic for the multiple-product inventory-routing problem. Computers and Operations Research 55, 153–166 (2015)

    CrossRef  MathSciNet  Google Scholar 

  32. Mirzapour Al-e-hashem, S.M.J., Rekik, Y.: Multi-product multi-period Inventory Routing Problem with a transshipment option: A green approach. International Journal of Production Economics 157, 80–88 (2014)

    CrossRef  Google Scholar 

  33. Huber, S., Geiger, M.J., Sevaux, M.: Interactive approach to the inventory routing problem: computational speedup through focused search. In: Dethloff, J., Haasis, H.-D., Kopfer, H., Kotzab, H., Schönberger, J. (eds.) Logistics Management. Lecture Notes in Logistics, pp. 339–353. Springer International Publishing (2015)

    Google Scholar 

  34. Coelho, L.C., Cordeau, J.F., Laporte, G.: Thirty years of inventory routing. Transportation Science 48(1), 1–19 (2013)

    CrossRef  Google Scholar 

  35. Archetti, C., Bianchessi, N., Irnich, S., Speranza, M.G.: Formulations for an inventory routing problem. International Transactions in Operational Research 21(3), 353–374 (2014)

    CrossRef  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viacheslav A. Shirokikh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Shirokikh, V.A., Zakharov, V.V. (2015). Dynamic Adaptive Large Neighborhood Search for Inventory Routing Problem. In: Le Thi, H., Pham Dinh, T., Nguyen, N. (eds) Modelling, Computation and Optimization in Information Systems and Management Sciences. Advances in Intelligent Systems and Computing, vol 359. Springer, Cham. https://doi.org/10.1007/978-3-319-18161-5_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18161-5_20

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18160-8

  • Online ISBN: 978-3-319-18161-5

  • eBook Packages: EngineeringEngineering (R0)