Dynamic Adaptive Large Neighborhood Search for Inventory Routing Problem

  • Viacheslav A. ShirokikhEmail author
  • Victor V. Zakharov
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 359)


This paper is devoted to new approach to increase level of time consistency of heuristics and propose Dynamic Adaptive Large Neighborhood Search (DALNS) algorithm to improve solutions generated by ALNS.

To evaluate effectiveness of DALNS implementation computational experiments were performed on benchmark instances. It was shown that the number of tests in which solution was improved equals 5236 (46% of total amount).


time consistency inventory routing problem (IRP) heuristic algorithms adaptive large neighborhood search (ALNS) dynamic adaptive large neighborhood search (DALNS) 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Assad, A., Golden, B., Dahl, R., Dror, M.: Design of an inventory routing system for a large propane-distribution firm. In: Gooding, C. (ed.) Proceedings of the 1982 Southeast TIMS Conference, pp. 315–320 (1982)Google Scholar
  2. 2.
    Dror, M., Ball, M., Golden, B.: A computational comparison of algorithms for the inventory routing problem. Annals of Operations Research 4(1), 1–23 (1985)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Bell, W.J., Dalberto, L.M., Fisher, M.L., Greenfield, A.J., Jaikumar, R., Kedia, P., Mack, R.G., Prutzman, P.J.: Improving the distribution of industrial gases with an on-line computerized routing and scheduling optimizer. Interfaces 13(6), 4–23 (1983)CrossRefGoogle Scholar
  4. 4.
    Blumenfeld, D.E., Burns, L.D., Diltz, J.D., Daganzo, C.F.: Analyzing trade-offs between transportation, inventory and production costs on freight networks. Transportation Research Part B: Methodological 19(5), 361–380 (1985)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Blumenfeld, D.E., Burns, L.D., Daganzo, C.F., Frick, M.C., Hall, R.W.: Reducing logistics costs at General Motors. Interfaces 17(1), 26–47 (1987)CrossRefGoogle Scholar
  6. 6.
    Bertazzi, L., Paletta, G., Speranza, M.G.: Deterministic order-up-to level policies in an inventory routing problem. Transportation Science 36(1), 119–132 (2002)CrossRefzbMATHGoogle Scholar
  7. 7.
    Archetti, C., Bertazzi, L., Laporte, G., Speranza, M.G.: A branch-and-cut algorithm for a vendor-managed inventory-routing problem. Transportation Science 41(3), 382–391 (2007)CrossRefGoogle Scholar
  8. 8.
    Coelho, L.C., Laporte, G.: The exact solution of several classes of inventory-routing problems. Computers and Operations Research 40(2), 558–565 (2013)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Coelho, L.C., Laporte, G.: A branch-and-cut algorithm for the multi-product multi-vehicle inventory-routing problem. International Journal of Production Research 51(23-24), 7156–7169 (2013)CrossRefGoogle Scholar
  10. 10.
    Ronen, D.: Marine inventory routing: Shipments planning. Journal of the Operational Research Society 53(1), 108–114 (2002)CrossRefzbMATHGoogle Scholar
  11. 11.
    Coelho, L.C., Cordeau, J.-F., Laporte, G.: Heuristics for dynamic and stochastic inventory-routing. Computers and Operations Research 52(Part A), 55–67 (2014)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Bertazzi, L., Bosco, A., Guerriero, F., Laganà, D.: A stochastic inventory routing problem with stock-out. Transportation Research Part C: Emerging Technologies 27, 89–107 (2013)CrossRefGoogle Scholar
  13. 13.
    Cáceres-Cruz, J., Juan, A.A., Bektas, T., Grasman, S.E., Faulin, J.: Combining Monte Carlo simulation with heuristics for solving the inventory routing problem with stochastic demands. In: Laroque, C., Himmelspach, J., Pasupathy, R., Rose, O., Uhrmacher, A. (eds.) Proceedings of the 2012 Winter Simulation Conference, pp. 274–274. IEEE Press, Piscataway (2012)Google Scholar
  14. 14.
    Geiger, M.J., Sevaux, M.: The biobjective inventory routing problem – problem solution and decision support. In: Pahl, J., Reiners, T., Voß, S. (eds.) INOC 2011. LNCS, vol. 6701, pp. 365–378. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  15. 15.
    Coelho, L.C., Cordeau, J.F., Laporte, G.: The inventory-routing problem with transshipment. Computers and Operations Research 39(11), 2537–2548 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Papageorgiou, D.J., Nemhauser, G.L., Sokol, J., Cheon, M.S., Keha, A.B.: MIRPLib–A library of maritime inventory routing problem instances: Survey, core model, and benchmark results. European Journal of Operational Research 235(2), 350–366 (2014)CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Archetti, C., Bertazzi, L., Hertz, A., Speranza, M.G.: A hybrid heuristic for an inventory routing problem. INFORMS Journal on Computing 24(1), 101–116 (2012)CrossRefMathSciNetGoogle Scholar
  18. 18.
    Moin, N.H., Salhi, S., Aziz, N.A.B.: An efficient hybrid genetic algorithm for the multi-product multi-period inventory routing problem. International Journal of Production Economics 133(1), 334–343 (2011)CrossRefGoogle Scholar
  19. 19.
    Marinakis, Y., Marinaki, M.: A particle swarm optimization algorithm with path relinking for the location routing problem. Journal of Mathematical Modelling and Algorithms 7(1), 59–78 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    Bellman, R.: Dynamic Programming. Princeton University Press, Princeton (1957)zbMATHGoogle Scholar
  21. 21.
    Zakharov, V.V., Schegryaev, A.N.: Multi-period cooperative vehicle routing games. Contributions to Game Theory and Management 7, 349–359 (2014)Google Scholar
  22. 22.
    Desaulniers, G., Rakke, J.G., Coelho, L.C.: A branch-price-and-cut algorithm for the inventory-routing problem (2015),
  23. 23.
    Coelho, L.C., Laporte, G.: Improved solutions for inventory-routing problems through valid inequalities and input ordering. International Journal of Production Economics 155(1), 391–397 (2014)CrossRefGoogle Scholar
  24. 24.
    Agra, A., Christiansen, M., Delgado, A., Simonetti, L.: Hybrid heuristics for a short sea inventory routing problem. European Journal of Operational Research 236(3), 924–935 (2014)CrossRefzbMATHMathSciNetGoogle Scholar
  25. 25.
    Van Anholt, R.G., Coelho, L.C., Laporte, G., Vis, I.F.A.: An Inventory-Routing Problem with Pickups and Deliveries Arising in the Replenishment of Automated Teller Machines (2015),
  26. 26.
    Brinkmann, J., Ulmer, M.W., Mattfeld, D.C.: Inventory Routing for Bike Sharing Systems (2015),
  27. 27.
    Aksen, D., Kaya, O., Salman, F.S., Tüncel, Ö.: An adaptive large neighborhood search algorithm for a selective and periodic inventory routing problem. European Journal of Operational Research 239(2), 413–426 (2014)CrossRefMathSciNetGoogle Scholar
  28. 28.
    Vansteenwegen, P., Mateo, M.: An iterated local search algorithm for the single-vehicle cyclic inventory routing problem. European Journal of Operational Research 237(3), 802–813 (2014)CrossRefGoogle Scholar
  29. 29.
    Raa, B.: Fleet optimization for cyclic inventory routing problems. International Journal of Production Economics 160, 172–181 (2015)CrossRefGoogle Scholar
  30. 30.
    Bertazzi, L., Bosco, A., Laganà, D.: Managing stochastic demand in an Inventory Routing Problem with transportation procurement. Omega (October 16, 2014),
  31. 31.
    Cordeau, J.F., Laganà, D., Musmanno, R., Vocaturo, F.: A decomposition-based heuristic for the multiple-product inventory-routing problem. Computers and Operations Research 55, 153–166 (2015)CrossRefMathSciNetGoogle Scholar
  32. 32.
    Mirzapour Al-e-hashem, S.M.J., Rekik, Y.: Multi-product multi-period Inventory Routing Problem with a transshipment option: A green approach. International Journal of Production Economics 157, 80–88 (2014)CrossRefGoogle Scholar
  33. 33.
    Huber, S., Geiger, M.J., Sevaux, M.: Interactive approach to the inventory routing problem: computational speedup through focused search. In: Dethloff, J., Haasis, H.-D., Kopfer, H., Kotzab, H., Schönberger, J. (eds.) Logistics Management. Lecture Notes in Logistics, pp. 339–353. Springer International Publishing (2015)Google Scholar
  34. 34.
    Coelho, L.C., Cordeau, J.F., Laporte, G.: Thirty years of inventory routing. Transportation Science 48(1), 1–19 (2013)CrossRefGoogle Scholar
  35. 35.
    Archetti, C., Bianchessi, N., Irnich, S., Speranza, M.G.: Formulations for an inventory routing problem. International Transactions in Operational Research 21(3), 353–374 (2014)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Faculty of Applied Mathematics and Control ProcessesSt.Petersburg State UniversitySt.PetersburgRussia

Personalised recommendations