Skip to main content

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 359))

Abstract

The self-concordant-like property of a smooth convex function is a new analytical structure that generalizes the self-concordant notion. While a wide variety of important applications feature the self-concordant-like property, this concept has heretofore remained unexploited in convex optimization. To this end, we develop a variable metric framework of minimizing the sum of a “simple” convex function and a self-concordant-like function. We introduce a new analytic step-size selection procedure and prove that the basic gradient algorithm has improved convergence guarantees as compared to “fast” algorithms that rely on the Lipschitz gradient property. Our numerical tests with real-data sets show that the practice indeed follows the theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bach, F.: Self-concordant analysis for logistic regression. Electron. J. Statist. 4, 384–414 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bach, F.: Adaptivity of averaged stochastic gradient descent to local strong convexity for logistic regression (2013)

    Google Scholar 

  3. Beck, A., Teboulle, M.: A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems. SIAM J. Imaging Sciences 2(1), 183–202 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  4. Becker, S., Candès, E.J., Grant, M.: Templates for convex cone problems with applications to sparse signal recovery. Mathematical Programming Computation 3(3), 165–218 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  5. Becker, S., Fadili, M.J.: A quasi-Newton proximal splitting method. In: Adv. Neural Information Processing Systems (2012)

    Google Scholar 

  6. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press (2004)

    Google Scholar 

  7. Dolan, E.D., Moré, J.J.: Benchmarking optimization software with performance profiles. Math. Program. 91, 201–213 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  8. Lee, J.D., Sun, Y., Saunders, M.A.: Proximal Newton-type methods for convex optimization. SIAM J. Optim. 24(3), 1420–1443 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  9. Mine, H., Fukushima, M.: A minimization method for the sum of a convex function and a continuously differentiable function. J. Optim. Theory Appl. 33, 9–23 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  10. Nesterov, Y.: Introductory lectures on convex optimization: a basic course. Applied Optimization, vol. 87. Kluwer Academic Publishers (2004)

    Google Scholar 

  11. Nesterov, Y.: Gradient methods for minimizing composite objective function. Math. Program. 140(1), 125–161 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  12. Nesterov, Y., Nemirovski, A.: Interior-point Polynomial Algorithms in Convex Programming. Society for Industrial Mathematics (1994)

    Google Scholar 

  13. Nocedal, J., Wright, S.J.: Numerical Optimization, 2nd edn. Springer Series in Operations Research and Financial Engineering. Springer (2006)

    Google Scholar 

  14. Parikh, N., Boyd, S.: Proximal algorithms. Foundations and Trends in Optimization 1(3), 123–231 (2013)

    Google Scholar 

  15. Robinson, S.M.: Strongly Regular Generalized Equations. Mathematics of Operations Research 5(1), 43–62 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  16. Rockafellar, R.T.: Convex Analysis. Princeton Mathematics Series, vol. 28. Princeton University Press (1970)

    Google Scholar 

  17. Schmidt, M., Roux, N.L., Bach, F.: Convergence rates of inexact proximal-gradient methods for convex optimization. In: NIPS, Granada, Spain (2011)

    Google Scholar 

  18. Tran-Dinh, Q., Kyrillidis, A., Cevher, V.: Composite self-concordant minimization. J. Mach. Learn. Res. 15, 1–54 (2014) (accepted)

    Google Scholar 

  19. Tran-Dinh, Q., Li, Y.-H., Cevher, V.: Composite convex minimization involving self-concordant-like cost functions. LIONS-Tech. Report., 1–19 (2015), http://arxiv.org/abs/1502.01068

  20. Yuan, Y.X.: Recent advances in numerical methods for nonlinear equations and nonlinear least squares. Numerical Algebra, Control and Optimization 1(1), 15–34 (2011)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Tran-Dinh, Q., Li, YH., Cevher, V. (2015). Composite Convex Minimization Involving Self-concordant-Like Cost Functions. In: Le Thi, H., Pham Dinh, T., Nguyen, N. (eds) Modelling, Computation and Optimization in Information Systems and Management Sciences. Advances in Intelligent Systems and Computing, vol 359. Springer, Cham. https://doi.org/10.1007/978-3-319-18161-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18161-5_14

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18160-8

  • Online ISBN: 978-3-319-18161-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics